36 research outputs found

    Towards a taxonomy of innovation systems

    Get PDF
    The concept of National Innovation System (NIS) has been recently applied in the context of developing nations even tough it was originally developed in relation to the more developed economies (Japan, Scandinavian countries, US etc.). This raises the methodological problem of knowing whether what was learnt in the study of more advanced NISs is relevant for all sorts of economies regardless the maturity of their actual innovation systems. With this question in mind an exploratory exercise is implemented. First a technique for mapping different NIS is put forward and next based on such mapping a taxonomy of NISs is proposed. The technique although simple in the steps it requires shows analytical potential. The cartography it generates allows one to compare directly different countries, by visualizing in bi-dimensional space the graphic pattern of the relevant dimensions of their respective NISs. This technique is applied to 69 countries (87.4% of the world population) and a set of 29 indicators is used to examine these NISs along eight major dimensions. With the resulting data, and with the help of cluster analysis, a taxonomy of innovation systems is proposed. That taxonomy which contains 6 major types of NISs indicates that what differentiates most the individual systems is their performance in three critical dimensions: innovation, diffusion and basic and applied knowledge. Country size and the natural resources endowment of the economies also emerge as important contingency factors underlying the overall dynamics of different NISs.innovation; national innovation systems; economic development.

    Towards a taxonomy of innovation systems

    Get PDF
    The concept of National Innovation System (NIS) has been recently applied in the context of developing nations even tough it was originally developed in relation to the more developed economies (Japan, Scandinavian countries, US etc.). This raises the methodological problem of knowing whether what was learnt in the study of more advanced NISs is relevant for all sorts of economies regardless the maturity of their actual innovation systems. With this question in mind an exploratory exercise is implemented. First a technique for mapping different NIS is put forward and next based on such mapping a taxonomy of NISs is proposed. The technique although simple in the steps it requires shows analytical potential. The cartography it generates allows one to compare directly different countries, by visualizing in bi-dimensional space the graphic pattern of the relevant dimensions of their respective NISs. This technique is applied to 69 countries (87.4% of the world population) and a set of 29 indicators is used to examine these NISs along eight major dimensions. With the resulting data, and with the help of cluster analysis, a taxonomy of innovation systems is proposed. That taxonomy which contains 6 major types of NISs indicates that what differentiates most the individual systems is their performance in three critical dimensions: innovation, diffusion and basic and applied knowledge. Country size and the natural resources endowment of the economies also emerge as important contingency factors underlying the overall dynamics of different NISs

    Cerebral perfusion changes in presymptomatic genetic frontotemporal dementia: a GENFI study

    Get PDF
    Genetic forms of frontotemporal dementia are most commonly due to mutations in three genes, C9orf72, GRN or MAPT, with presymptomatic carriers from families representing those at risk. While cerebral blood flow shows differences between frontotemporal dementia and other forms of dementia, there is limited evidence of its utility in presymptomatic stages of frontotemporal dementia. This study aimed to delineate the cerebral blood flow signature of presymptomatic, genetic frontotemporal dementia using a voxel-based approach. In the multicentre GENetic Frontotemporal dementia Initiative (GENFI) study, we investigated cross-secti

    Presymptomatic white matter integrity loss in familial frontotemporal dementia in the GENFI cohort

    Get PDF
    Objective: We aimed to investigate mutation-specific white matter (WM) integrity changes in presymptomatic and symptomatic mutation carriers of the C9orf72, MAPT, and GRN mutations by use of diffusion-weighted imaging within the Genetic Frontotemporal dementia Initiative (GENFI) study. Methods: One hundred and forty mutation carriers (54 C9orf72, 30 MAPT, 56 GRN), 104 presymptomatic and 36 symptomatic, and 115 noncarriers underwent 3T diffusion tensor imaging. Linear mixed effects models were used to examine the association between diffusion parameters and years from estimated symptom onset in C9orf72, MAPT, and GRN mutation carriers versus noncarriers. Post hoc analyses were performed on presymptomatic mutation carriers only, as well as left–right asymmetry analyses on

    Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

    Get PDF
    The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique-Subtype and Stage Inference (SuStaIn)-able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer's disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 × 10-4) or temporal stage (p = 3.96 × 10-5). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine

    White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study

    Get PDF
    Frontotemporal dementia (FTD) is a heterogeneous group of neurodegenerative disorders with both sporadic and genetic forms. Mutations in the progranulin gene (GRN) are a common cause of genetic FTD, causing either a behavioural presentation or, less commonly, language impairment. Presence on T2-weighted images of white matter hyperintensities (WMH) has been previously shown to be more commonly associated with GRN mutations rather than other forms of FTD. The aim of the current study was to investigate the longitudinal change in WMH and the associations of WMH burden with grey matter (GM) loss, markers of neurodegeneration and cognitive function in GRN mutation carriers. 336 participants in the Genetic FTD Initiative (GENFI) study were included in the analysis: 101 presymptomatic and 32 symptomatic GRN mutation carriers, as well as 203 mutation-negative controls. 39 presymptomatic and 12 symptomatic carriers, and 73 controls also had longitudinal data available. Participants underwent MR imaging acquisition including isotropic 1 mm T1-weighted and T2-weighted sequences. WMH were automatically segmented and locally subdivided to enable a more detailed representation of the pathology distribution. Log-transformed WMH volumes were investigated in terms of their global and regional associations with imaging measures (grey matter volumes), biomarker concentrations (plasma neurofilament light chain, NfL, and glial fibrillary acidic protein, GFAP), genetic status (TMEM106B risk genotype) and cognition (tests of executive function). Analyses revealed that WMH load was higher in both symptomatic and presymptomatic groups compared with controls and this load increased over time. In particular, lesions were seen periventricularly in frontal and occipital lobes, progressing to medial layers over time. However, there was variability in the WMH load across GRN mutation carriers – in the symptomatic group 25.0% had none/mild load, 37.5% had medium and 37.5% had a severe load – a diffe

    Apathy in presymptomatic genetic frontotemporal dementia predicts cognitive decline and is driven by structural brain changes

    Get PDF
    Introduction: Apathy adversely affects prognosis and survival of patients with frontotemporal dementia (FTD). We test whether apathy develops in presymptomatic genetic FTD, and is associated with cognitive decline and brain atrophy. Methods: Presymptomatic carriers of MAPT, GRN or C9orf72 mutations (N = 304), and relatives without mutations (N = 296) underwent clinical assessments and MRI at baseline, and annually for 2 years. Longitudinal changes in apathy, cognition, gray matter volumes, and their relationships were analyzed with latent growth curve modeling. Results: Apathy severity increased over time in presymptomatic carriers, but not in non-carriers. In presymptomatic carriers, baseline apathy predicted cognitive decline over two years, but not vice versa. Apathy progression was associated with baseline low gray matter volume in frontal and cingulate regions. Discussion: Apathy is an early marker of FTD-related changes and predicts a subsequent subclinical deterioration of cognition before dementia onset. Apathy may be a modifiable factor in those at risk of FTD

    Plasma Neurofilament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration

    Get PDF
    Objective: We tested the hypothesis that plasma neurofilament light chain (NfL) identifies asymptomatic carriers of familial frontotemporal lobar degeneration (FTLD)-causing mutations at risk of disease progression. Methods: Baseline plasma NfL concentrations were measured with single-molecule array in original (n = 277) and validation (n = 297) cohorts. C9orf72, GRN, and MAPT mutation carriers and noncarriers from the same families were classified by disease severity (asymptomatic, prodromal, and full phenotype) using the CDR Dementia Staging Instrument plus behavior and language domains from the National Alzheimer's Disease Coordinating Center FTLD module (CDR+NACC-FTLD). Linear mixed-effect models related NfL to clinical variables. Results: In both cohorts, baseline NfL was higher in asymptomatic mutation carriers who showed phenoconversion or disease progression compared to nonprogressors (original: 11.4 ± 7 pg/mL vs 6.7 ± 5 pg/mL, p = 0.002; validation: 14.1 ± 12 pg/mL vs 8.7 ± 6 pg/mL, p = 0.035). Plasma NfL discriminated symptomatic from asymptomatic mutation carriers or those with prodromal disease (original cutoff: 13.6 pg/mL, 87.5% sensitivity, 82.7% specificity; validation cutoff: 19.8 pg/mL, 87.4% sensitivity, 84.3% specificity). Higher baseline NfL correlated with worse longitudinal CDR+NACC-FTLD sum of boxes scores, neuropsychological function, and atrophy, regardless of genotype or disease severity, including asymptomatic mutation carriers. Conclusions: Plasma NfL identifies asymptomatic carriers of FTLD-causing mutations at short-term risk of disease progression and is a potential tool to select participants for prevention clinical trials. Trial registration information: ClinicalTrials.gov Identifier: NCT02372773 and NCT02365922. Classification of evidence: This study provides Class I evidence that in carriers of FTLD-causing mutations, elevation of plasma NfL predicts short-term risk of clinical progression
    corecore