43 research outputs found

    External quality assessment of cytomegalovirus DNA detection on dried blood spots

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Testing for viral DNA in neonatal blood dried on paper (DBS) has proved a valid means of diagnosing congenital CMV infection with both clinical and epidemiological relevance. To assess the quality of the detection of CMV-DNA on DBS in laboratories performing this test a proficiency panel consisting of nine samples with two blood spots on each filter paper was produced and distributed. Six samples were derived from whole blood, negative for CMV DNA and antibody, and spiked with cell-grown CMV Towne in various concentrations (7.3 × 10<sup>2 </sup>– 9.6 × 10<sup>5 </sup>copies/ml), one was a CMV positive clinical specimen (3.9 × 10<sup>6 </sup>copies/ml), and two samples were CMV-negative whole blood.</p> <p>Results</p> <p>The 27 responding laboratories from 14 countries submitted 33 datasets obtained by means of conventional PCR (n = 5) or real-time PCR (n = 28) technologies. A correct positive result was reported in at least 91% of datasets in samples with a viral load of 8.8 × 10<sup>4 </sup>copies/ml or higher. However only 59% and 12% identified the 9.4 × 10<sup>3 </sup>and 7.3 × 10<sup>2 </sup>copies/ml samples, respectively, correctly as positive. False positive results were reported by 9% of laboratories and in 11% of datasets.</p> <p>Conclusion</p> <p>These results indicate a clear need for improvement of methods as sensitivity and false-positivity still appear to be a major problem in a considerable number of laboratories.</p

    Tackling the Challenging Determination of Trace Elements in Ultrapure Silicon Carbide by LA-ICP-MS

    Get PDF
    The goal of accurately quantifying trace elements in ultrapure silicon carbide (SiC) with a purity target of 5N (99.999% purity) was addressed. The unsuitability of microwave-assisted acid digestion followed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis was proved to depend mainly on the contamination induced by memory effects of PTFE microwave vessels and by the purity levels of acids, even if highly pure ones were used in a clean environment. A new analytical protocol for the direct analysis of the solid material by laser ablation coupled with ICP-MS (LA-ICP-MS) was then exploited. Different samples were studied; the best results were obtained by embedding SiC (powders or grains) in epoxy resin. This technique has the great advantage of avoiding any source of external contamination, as grinding, pressing and sintering pretreatments are totally unnecessary. Two different laser wavelengths (266 and 193 nm) were tested, and best results were obtained with the 266 nm laser. The optimized protocol allows the determination of elements down to the sub-mg/kg level with a good accuracy level

    Burden of pediatrics hospitalizations associated with Rotavirus gastroenteritis in Lombardy (Northern Italy) before immunization program

    Get PDF
    Aim. Rotavirus is recognized as the main cause of acute gastroenteritis in children under 5 years old, representing a considerable public health problem with a great impact on social and public health costs in developed countries. This study aims to assess the frequency and the epidemiological aspect of the hospitalization associated with Rotavirusgastroenteritis  in Lombardy, Northern Italy, from 2005 to 2011. Methods. The Lombardy Hospital Discharge Database was inquired from the official data of the Italian Ministry of Health and investigated for acute gastroenteritis (ICD9-CM code for bacteria, parasitic, viral and undetermined etiologic diarrhea) in primaryn and secondary diagnosis in children ≤ 5 years, between 2005 and 2011. Results. Out of the 32 944 acute-gastroenteritis hospitalizations reported in Lombardy, the 50.8% was caused by Rotavirus infection; of these, the 65.5% were reported in primary diagnosis. The peak of Rotavirus-gastroenteritis hospitalization was observed in February-March in children < 2 years old, with a cumulative prevalence of 64.5%. Patients admitted to hospital with diarrhea of undetermined etiology (about 14% of overall acute-gastroenteritis) showed epidemiological characteristics similar to the Rotavirusgastroenteritis, suggesting that the virus infection could also be involved in at least some of these. Conclusion. Our data confirm that Rotavirus are the most important agents involving in acute gastroenteritis hospitalizations. The use of Hospital Discharge Database had proved to be a simple tool to estimate the burden and to describe the epidemiological characteristics of Rotavirus gastroenteritis and could be used as a surveillance activity before and after the introduction of mass vaccination at national and regional level in Italy

    Pp65 antigenemia, plasma real-time PCR and DBS test in symptomatic and asymptomatic cytomegalovirus congenitally infected newborns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many congenitally cytomegalovirus-infected (cCMV) neonates are at risk for severe consequences, even if they are asymptomatic at birth. The assessment of the viral load in neonatal blood could help in identifying the babies at risk of sequelae.</p> <p>Methods</p> <p>In the present study, we elaborated the results obtained on blood samples collected in the first two weeks of life from 22 symptomatic and 48 asymptomatic newborns with cCMV diagnosed through urine testing. We evaluated the performances of two quantitative methods (pp65 antigenemia test and plasma Real-time PCR) and the semi-quantitative results of dried blood sample (DBS) test in the aim of identifying a valid method for measuring viral load.</p> <p>Results</p> <p>Plasma qPCR and DBS tests were positive in 100% of cases, antigenemia in 81%. Only the latter test gave quantitatively different results in symptomatic versus asymptomatic children. qPCR values of 10<sup>3 </sup>copies/ml were found in 52% of newborn. "Strong" DBS test positivity cases had higher median values of both pp65 positive PBL and DNA copies/ml than cases with a "weak" positivity.</p> <p>Conclusions</p> <p>As expected antigenemia test was less sensitive than molecular tests and DBS test performed better on samples with higher rates of pp65 positive PBL and higher numbers of DNA copies/ml. The prognostic significance of the results of these tests will be evaluated on completion of the ongoing collection of follow-up data of these children.</p

    On the lookout for influenza viruses in Italy during the 2021-2022 season: along came A(H3N2) viruses with a new phylogenetic makeup of their hemagglutinin

    Get PDF
    Aims: To assess influenza viruses (IVs) circulation and to evaluate A(H3N2) molecular evolution during the 2021-2022 season in Italy. Materials and methods: 12,393 respiratory specimens (nasopharyngeal swabs or broncho-alveolar lavages) collected from in/outpatients with influenza illness in the period spanning from January 1, 2022 (week 2022-01) to May 31, 2022 (week 2022-22) were analysed to identify IV genome and molecularly characterized by 12 laboratories throughout Italy. A(H3N2) evolution was studied by conducting an in-depth phylogenetic analysis of the hemagglutinin (HA) gene sequences. The predicted vaccine efficacy (pVE) of vaccine strain against circulating A(H3N2) viruses was estimated using the sequence-based Pepitope model. Results: The overall IV-positive rate was 7.2% (894/12,393), all were IV type A. Almost all IV-A (846/894; 94.6%) were H3N2 that circulated in Italy with a clear epidemic trend, with 10% positivity rate threshold crossed for six consecutive weeks from week 2022-11 to week 2022-16. According to the phylogenetic analysis of a subset of A(H3N2) strains (n=161), the study HA sequences were distributed into five different genetic clusters, all of them belonging to the clade 3C.2a, sub-clade 3C.2a1 and the genetic subgroup 3C.2a1b.2a.2. The selective pressure analysis of A(H3N2) sequences showed evidence of diversifying selection particularly in the amino acid position 156. The comparison between the predicted amino acid sequence of the 2021-2022 vaccine strain (A/Cambodia/e0826360/2020) and the study strains revealed 65 mutations in 59 HA amino acid positions, including the substitution H156S and Y159N in antigenic site B, within major antigenic sites adjacent to the receptor-binding site, suggesting the presence of drifted strains. According to the sequence-based Pepitope model, antigenic site B was the dominant antigenic site and the p(VE) against circulating A(H3N2) viruses was estimated to be -28.9%. Discussion and conclusion: After a long period of very low IV activity since public health control measures have been introduced to face COVID-19 pandemic, along came A(H3N2) with a new phylogenetic makeup. Although the delayed 2021-2022 influenza season in Italy was characterized by a significant reduction of the width of the epidemic curve and in the intensity of the influenza activity compared to historical data, a marked genetic diversity of circulating A(H3N2) strains was observed. The identification of the H156S and Y159N substitutions within the main antigenic sites of the most of sequences also suggested the circulation of drifted variants with respect to the 2021-2022 vaccine strain. Molecular surveillance plays a critical role in the influenza surveillance architecture and it has to be strengthened also at local level to timely assess vaccine effectiveness and detect novel strains with potential impact on public health

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased fromone in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5-11 December, to 17.5% (25/143 samples) in the week 12-18, to 65.9% (89/135 samples) in the week 19-25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool

    Ultrafast Electrochemical Self-Doping of Anodic Titanium Dioxide Nanotubes for Enhanced Electroanalytical and Photocatalytic Performance

    No full text
    This study explores an ultrarapid electrochemical self-doping procedure applied to anodic titanium dioxide (TiO2) nanotube arrays in an alkaline solution to boost their performance for electroanalytical and photocatalytic applications. The electrochemical self-doping process (i.e., the creation of surface Ti3+ states by applying a negative potential) is recently emerging as a simpler and cleaner way to improve the electronic properties of TiO2 compared to traditional chemical and high-temperature doping strategies. Here, self-doping was carried out through varying voltages and treatment times to identify the most performing materials without compromising their structural stability. Interestingly, cyclic voltammetry characterization revealed that undoped TiO2 shows negligible activity, whereas all self-doped materials demonstrate their suitability as electrode materials: an outstandingly short 10 s self-doping treatment leads to the highest electrochemical activity. The electrochemical detection of hydrogen peroxide was assessed as well, demonstrating a good sensitivity and a linear detection range of 3–200 µM. Additionally, the self-doped TiO2 nanotubes exhibited an enhanced photocatalytic activity compared to the untreated substrate: the degradation potential of methylene blue under UV light exposure increased by 25% in comparison to undoped materials. Overall, this study highlights the potential of ultrafast electrochemical self-doping to unleash and improve TiO2 nanotubes performances for electroanalytical and photocatalytic applications
    corecore