13 research outputs found

    tert-Butyl 2-benzoyl-2-methyl­propanoate

    Get PDF
    The title compound, C15H20O3, is bent with a dihedral angle of 67.28 (9)° between the mean planes of the phenyl ring and a group encompassing the ester functionality (O=C—O—C). In the crystal, mol­ecules related by inversion symmetry are connected by weak C—H⋯O inter­actions into infinite chains. On one side of the mol­ecule there are two adjacent inter­actions between neighbouring mol­ecules involving the H atoms of methyl groups from the dimethyl groups and the O atoms of the ketone; on the other side, there are also two inter­actions to another adjacent mol­ecule involving the H atoms on the phenyl rings and the carbonyl O atoms of the ester functionality

    Drug-induced trafficking of p-glycoprotein in human brain capillary endothelial cells as demonstrated by exposure to mitomycin C.

    Get PDF
    P-glycoprotein (Pgp; ABCB1/MDR1) is a major efflux transporter at the blood-brain barrier (BBB), restricting the penetration of various compounds. In other tissues, trafficking of Pgp from subcellular stores to the cell surface has been demonstrated and may constitute a rapid way of the cell to respond to toxic compounds by functional membrane insertion of the transporter. It is not known whether drug-induced Pgp trafficking also occurs in brain capillary endothelial cells that form the BBB. In this study, trafficking of Pgp was investigated in human brain capillary endothelial cells (hCMEC/D3) that were stably transfected with a doxycycline-inducible MDR1-EGFP fusion plasmid. In the presence of doxycycline, these cells exhibited a 15-fold increase in Pgp-EGFP fusion protein expression, which was associated with an increased efflux of the Pgp substrate rhodamine 123 (Rho123). The chemotherapeutic agent mitomycin C (MMC) was used to study drug-induced trafficking of Pgp. Confocal fluorescence microscopy of single hCMEC/D3-MDR1-EGFP cells revealed that Pgp redistribution from intracellular pools to the cell surface occurred within 2 h of MMC exposure. Pgp-EGFP exhibited a punctuate pattern at the cell surface compatible with concentrated regions of the fusion protein in membrane microdomains, i.e., lipid rafts, which was confirmed by Western blot analysis of biotinylated cell surface proteins in Lubrol-resistant membranes. MMC exposure also increased the functionality of Pgp as assessed in three functional assays with Pgp substrates (Rho123, eFluxx-ID Gold, calcein-AM). However, this increase occurred with some delay after the increased Pgp expression and coincided with the release of Pgp from the Lubrol-resistant membrane complexes. Disrupting rafts by depleting the membrane of cholesterol increased the functionality of Pgp. Our data present the first direct evidence of drug-induced Pgp trafficking at the human BBB and indicate that Pgp has to be released from lipid rafts to gain its full functionality

    A Meta-analysis of Multiple Myeloma Risk Regions in African and European Ancestry Populations Identifies Putatively Functional Loci

    Get PDF
    Genome-wide association studies (GWAS) in European populations have identified genetic risk variants associated with multiple myeloma (MM)

    Hypoxia further exacerbates woody breast myopathy in broilers via alteration of satellite cell fate

    No full text
    ABSTRACT: Woody breast (WB) condition has created a variety of challenges for the global poultry industry. To date, there are no effective treatments or preventative measures due to its unknown (undefined) etiology. Several potential mechanisms including oxidative stress, fiber-type switching, cellular damage, and altered intracellular calcium levels have been proposed to play a key role in the progression of the WB myopathy. In a previous study, we have shown that WB is associated with hypoxia-like status and dysregulated oxygen homeostasis. As satellite cells (SC) play a pivotal role in muscle fiber repair and remodeling under stress conditions, we undertook the present study to determine satellite cell fate in WB-affected birds when reared in either normoxic or hypoxic conditions. Modern random bred broilers from 2015 (n = 200) were wing banded and reared under standard brooding practices for the first 2 wk post-hatch. At 15 d, chicks were divided in 2 body weight-matched groups and reared to 6 wk in either control local altitude or hypobaric chambers with simulated altitude of 6,000 ft. Birds were provided ad libitum access to water and feed, according to the Cobb recommendations. At 6 wk of age, birds were processed and scored for WB, and breast samples were collected from WB-affected and unaffected birds for molecular analyses (n = 10/group). SCs were isolated from normal breast muscle, cultured in vitro, and exposed to normoxia or hypoxia for 2 h. The expression of target genes was determined by qPCR using 2−∆∆Ct method. Protein distribution and expression were determined by immunofluorescence staining and immunoblot, respectively. Data were analyzed by the Student's t test with significance set at P < 0.05. Multiple satellite cell markers, myogenic factor (Myf)-5 and paired box (PAX)-7 were significantly decreased at the mRNA and protein levels in the breast muscle from WB-affected birds compared to their unaffected counterparts. Lipogenic-and adipogenic-associated factors (acetyl-CoA carboxylase, ACCα; fatty acid synthase, FASN, malic enzyme, ME; and ATP citrate lyase, ACLY) were activated in WB-affected birds. These data were supported by an in vitro study where hypoxia decreased the expression of Myf5 and Pax7, and increased that of ACCα, FASN, ME, and ACLY. Together, these data indicate that under hypoxic condition, SC change fate by switching from a myogenic to an adipogenic program, which explains at least partly, the etiology of the WB myopathy

    A Meta-analysis of Multiple Myeloma Risk Regions in African and European Ancestry Populations Identifies Putatively Functional Loci.

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) in European populations have identified genetic risk variants associated with multiple myeloma. METHODS: We performed association testing of common variation in eight regions in 1,318 patients with multiple myeloma and 1,480 controls of European ancestry and 1,305 patients with multiple myeloma and 7,078 controls of African ancestry and conducted a meta-analysis to localize the signals, with epigenetic annotation used to predict functionality. RESULTS: We found that variants in 7p15.3, 17p11.2, 22q13.1 were statistically significantly (P \u3c 0.05) associated with multiple myeloma risk in persons of African ancestry and persons of European ancestry, and the variant in 3p22.1 was associated in European ancestry only. In a combined African ancestry-European ancestry meta-analysis, variation in five regions (2p23.3, 3p22.1, 7p15.3, 17p11.2, 22q13.1) was statistically significantly associated with multiple myeloma risk. In 3p22.1, the correlated variants clustered within the gene body of ULK4 Correlated variants in 7p15.3 clustered around an enhancer at the 3\u27 end of the CDCA7L transcription termination site. A missense variant at 17p11.2 (rs34562254, Pro251Leu, OR, 1.32; P = 2.93 x 10(-7)) in TNFRSF13B encodes a lymphocyte-specific protein in the TNF receptor family that interacts with the NF-kappaB pathway. SNPs correlated with the index signal in 22q13.1 cluster around the promoter and enhancer regions of CBX7. CONCLUSIONS: We found that reported multiple myeloma susceptibility regions contain risk variants important across populations, supporting the use of multiple racial/ethnic groups with different underlying genetic architecture to enhance the localization and identification of putatively functional alleles. IMPACT: A subset of reported risk loci for multiple myeloma has consistent effects across populations and is likely to be functional. Cancer Epidemiol Biomarkers Prev; 25(12); 1609-18. ©2016 AACR
    corecore