23 research outputs found

    A concise revised myeloma comorbidity index as a valid prognostic instrument in a large cohort of 801 multiple myeloma patients

    Get PDF
    With growing numbers of elderly multiple myeloma patients, reliable tools to assess their vulnerability are required. The objective of the analysis herein was to develop and validate an easy to use myeloma risk score (revised Myeloma Comorbidity Index) that allows for risk prediction of overall survival and progression-free survival differences in a large patient cohort. We conducted a comprehensive comorbidity, frailty and disability evaluation in 801 consecutive myeloma patients, including comorbidity risks obtained at diagnosis. The cohort was examined within a training and validation set. Multivariate analysis determined renal, lung and Karnofsky Performance Status impairment, frailty and age as significant risks for overall survival. These were combined in a weighted revised Myeloma Comorbidity Index, allowing for the identification of fit (revised Myeloma Comorbidity Index ≀3 [n=247, 30.8%]), intermediate-fit (revised Myeloma Comorbidity Index 4-6 [n=446, 55.7%]) and frail patients (revised Myeloma Comorbidity Index >6 [n=108, 13.5%]): these subgroups, confirmed via validation analysis, showed median overall survival rates of 10.1, 4.4 and 1.2 years, respectively. The revised Myeloma Comorbidity Index was compared to other commonly used comorbidity indices (Charlson Comorbidity Index, Hematopoietic Cell Transplantation-Specific Comorbidity Index, Kaplan-Feinstein Index): if each were divided in risk groups based on 25% and 75% quartiles, highest hazard ratios, best prediction and Brier scores were achieved with the revised Myeloma Comorbidity Index. The advantages of the revised Myeloma Comorbidity Index include its accurate assessment of patients' physical conditions and simple clinical applicability. We propose the revised Myeloma Comorbidity Index to be tested with the “reference” International Myeloma Working Group frailty score in multicenter analyses and future clinical trials

    A concise revised Myeloma Comorbidity Index as a valid prognostic instrument in a large cohort of 801 multiple myeloma patients

    Get PDF
    With growing numbers of elderly multiple myeloma patients, reliable tools to assess their vulnerability are required. The objective of the analysis herein was to develop and validate an easy to use myeloma risk score (revised Myeloma Comorbidity Index) that allows for risk prediction of overall survival and progression-free survival differences in a large patient cohort. We conducted a comprehensive comorbidity, frailty and disability evaluation in 801 consecutive myeloma patients, including comorbidity risks obtained at diagnosis. The cohort was examined within a training and validation set. Multivariate analysis determined renal, lung and Karnofsky Performance Status impairment, frailty and age as significant risks for overall survival. These were combined in a weighted revised Myeloma Comorbidity Index, allowing for the identification of fit (revised Myeloma Comorbidity Index ≀3 [n=247, 30.8%]), intermediate-fit (revised Myeloma Comorbidity Index 4-6 [n=446, 55.7%]) and frail patients (revised Myeloma Comorbidity Index >6 [n=108, 13.5%]): these subgroups, confirmed validation analysis, showed median overall survival rates of 10.1, 4.4 and 1.2 years, respectively. The revised Myeloma Comorbidity Index was compared to other commonly used comorbidity indices (Charlson Comorbidity Index, Hematopoietic Cell Transplantation-Specific Comorbidity Index, Kaplan-Feinstein Index): if each were divided in risk groups based on 25% and 75% quartiles, highest hazard ratios, best prediction and Brier scores were achieved with the revised Myeloma Comorbidity Index. The advantages of the revised Myeloma Comorbidity Index include its accurate assessment of patients' physical conditions and simple clinical applicability. We propose the revised Myeloma Comorbidity Index to be tested with the "reference" International Myeloma Working Group frailty score in multicenter analyses and future clinical trials. The study was registered at the German Clinical Trials Register (DRKS-00003868)

    SARS-CoV-2-specific immune responses and clinical outcomes after COVID-19 vaccination in patients with immune-suppressive disease

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (<380 AU ml−1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Geriatric assessment in multiple myeloma patients: validation of the International Myeloma Working Group (IMWG) score and comparison with other common comorbidity scores

    Get PDF
    This first validation of the International Myeloma Working Group geriatric assessment in 125 newly diagnosed multiple myeloma patients was performed using the International Myeloma Working Group score based on age, the Charlson Comorbidity Index and cognitive and physical conditions (Activities of Daily Living / Instrumental Activities of Daily Living) to classify patients as fit, intermediate-fit or frail. We verified the International Myeloma Working Group score’s impact on outcome, and whether additional tools complement it. Since our prior analyses determined renal, lung and Karnofsky performance impairment as multivariate risks, and the inclusion of frailty, age and cytogenetics complements this, we included the revised myeloma comorbidity index, the Charlson Comorbidity Index, the Hematopoietic Cell Transplantation-Comorbidity Index and the Kaplan-Feinstein Index in this assessment. Multivariate analysis confirmed cytogenetics, Activities of Daily Living, Instrumental Activities of Daily Living and the Charlson Comorbidity Index as risks: 3-year overall survival for fit, intermediate-fit and frail patients was 91%, 77% and 47%, respectively. Using the Charlson Comorbidity Index, the Hematopoietic Cell Transplantation-Comorbidity Index, the Kaplan-Feinstein Index and the revised Myeloma Comorbidity Index allowed us to define fit and frail patients with distinct progression-free and overall survival rates, with the most pronounced differences evidenced via the International Myeloma Working Group score, the Charlson Comorbidity Index and the revised Myeloma Comorbidity Index. Since the Charlson Comorbidity Index is included in the International Myeloma Working Group score, we propose the latter and the revised Myeloma Comorbidity Index for future frailty measurements. Both are useful instruments for identifying myeloma patients with a geriatric risk profile and have a strong prognostic value for functional decline and overall survival. The study was registered as: (clinicaltrials.gov Identifier: 00003686)
    corecore