50 research outputs found
A Novel Anti-diabetic Metabolite from Plants: Biosynthesis, Gene Discovery, and Metabolic Engineering of Montbretin A
Plant specialized metabolites (i.e. secondary metabolites) have been employed by humans for centuries in traditional and modern medicine. They remain an important source for the discovery of new pharmaceuticals and nutraceuticals. Montbretin A (MbA) is a complex acylated flavonoid glycoside discovered in the below-ground storage organs (corms) of the ornamental plant montbretia (Crocosmia x crocosmiiflora). MbA a highly potent and selective inhibitor of the human pancreatic α-amylase (HPA), a key enzyme in starch degradation. MbA is being tested for the treatment of type-2 diabetes. However, due to low abundance of MbA in montbretia plants and due the complex chemical structure of MbA, natural product extraction and chemical synthesis are insufficient for MbA production. Our goal is to develop a heterologous plant production system or a microbial production system for MbA. This requires knowledge of the genes, enzymes and regulating factors of the MbA biosynthetic system in montbretia. We achieved the discovery of the complete biosynthetic pathway of MbA using an approach that combined knowledge of montbretia biology, metabolite profiling, differential transcriptome analysis, cDNA cloning, heterologous gene expression in E. coli, yeast and tobacco, and enzyme biochemistry. This includes the discovery of five new UDP-sugar dependent glycosyltransferases (UGTs) and a BAHD-acyltransferases (AT) which together catalyze the complete assembly of MbA from its different building blocks. To reconstruct MbA production in tobacco (Nicotiana benthamiana) we enhanced the biosynthesis of flavonol precursors using genes for myricetin biosynthesis and transcription factors from montbtretia, which were stacked with genes of the MbA assembly pathway. We will highlight both challenges and opportunities of exploring novel biosynthetic systems of plant specialized metabolites for the development of new drugs, and bioproducts in general
CYP79D enzymes contribute to jasmonic acid-induced formation of aldoximes and other nitrogenous volatiles in two Erythroxylum species
The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation
CYP79D enzymes contribute to jasmonic acid-induced formation of aldoximes and other nitrogenous volatiles in two Erythroxylum species
Background:
Amino acid-derived aldoximes and nitriles play important roles in plant defence. They are well-known as precursors for constitutive defence compounds such as cyanogenic glucosides and glucosinolates, but are also released as volatiles after insect feeding. Cytochrome P450 monooxygenases (CYP) of the CYP79 family catalyze the formation of aldoximes from the corresponding amino acids. However, the majority of CYP79s characterized so far are involved in cyanogenic glucoside or glucosinolate biosynthesis and only a few have been reported to be responsible for nitrogenous volatile production.
Results:
In this study we analysed and compared the jasmonic acid-induced volatile blends of two Erythroxylum species, the cultivated South American crop species E. coca and the African wild species E. fischeri. Both species produced different nitrogenous compounds including aliphatic aldoximes and an aromatic nitrile. Four isolated CYP79 genes (two from each species) were heterologously expressed in yeast and biochemically characterized. CYP79D62 from E. coca and CYP79D61 and CYP79D60 from E. fischeri showed broad substrate specificity in vitro and converted L-phenylalanine, L-isoleucine, L-leucine, L-tryptophan, and L-tyrosine into the respective aldoximes. In contrast, recombinant CYP79D63 from E. coca exclusively accepted L-tryptophan as substrate. Quantitative real-time PCR revealed that CYP79D60, CYP79D61, and CYP79D62 were significantly upregulated in jasmonic acid-treated Erythroxylum leaves.
Conclusions:
The kinetic parameters of the enzymes expressed in vitro coupled with the expression patterns of the corresponding genes and the accumulation and emission of (E/Z)-phenylacetaldoxime, (E/Z)-indole-3-acetaldoxime, (E/Z)-3-methylbutyraldoxime, and (E/Z)-2-methylbutyraldoxime in jasmonic acid-treated leaves suggest that CYP79D60, CYP79D61, and CYP79D62 accept L-phenylalanine, L-leucine, L-isoleucine, and L-tryptophan as substrates in vivo and contribute to the production of volatile and semi-volatile nitrogenous defence compounds in E. coca and E. fischeri.Other UBCNon UBCReviewedFacult
The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa
Background:
Nitrilases are nitrile-converting enzymes commonly found within the plant kingdom that play diverse roles in nitrile detoxification, nitrogen recycling, and phytohormone biosynthesis. Although nitrilases are present in all higher plants, little is known about their function in trees. Upon herbivory, poplars produce considerable amounts of toxic nitriles such as benzyl cyanide, 2-methylbutyronitrile, and 3-methylbutyronitrile. In addition, as byproduct of the ethylene biosynthetic pathway upregulated in many plant species after herbivory, toxic β-cyanoalanine may accumulate in damaged poplar leaves. In this work, we studied the nitrilase gene family in Populus trichocarpa and investigated the potential role of the nitrilase PtNIT1 in the catabolism of herbivore-induced nitriles.
Results:
A BLAST analysis revealed three putative nitrilase genes (PtNIT1, PtNIT2, PtNIT3) in the genome of P. trichocarpa. While PtNIT1 was expressed in poplar leaves and showed increased transcript accumulation after leaf herbivory, PtNIT2 and PtNIT3 appeared not to be expressed in undamaged or herbivore-damaged leaves. Recombinant PtNIT1 produced in Escherichia coli accepted biogenic nitriles such as β-cyanoalanine, benzyl cyanide, and indole-3-acetonitrile as substrates in vitro and converted them into the corresponding acids. In addition to this nitrilase activity, PtNIT1 showed nitrile hydratase activity towards β-cyanoalanine, resulting in the formation of the amino acid asparagine. The kinetic parameters of PtNIT1 suggest that the enzyme utilizes β-cyanoalanine and benzyl cyanide as substrates in vivo. Indeed, β-cyanoalanine and benzyl cyanide were found to accumulate in herbivore-damaged poplar leaves. The upregulation of ethylene biosynthesis genes after leaf herbivory indicates that herbivore-induced β-cyanoalanine accumulation is likely caused by ethylene formation.
Conclusions:
Our data suggest a role for PtNIT1 in the catabolism of herbivore-induced β-cyanoalanine and benzyl cyanide in poplar leaves.Other UBCNon UBCReviewedFacult
Flavonol Biosynthesis Genes and Their Use in Engineering the Plant Antidiabetic Metabolite Montbretin A
4-Coumaroyl-CoA ligases in the biosynthesis of the anti-diabetic metabolite montbretin A
Background
Montbretins are rare specialized metabolites found in montbretia (Crocosmia x crocosmiiflora) corms. Montbretin A (MbA) is of particular interest as a novel therapeutic for type-2 diabetes and obesity. There is no scalable production system for this complex acylated flavonol glycoside. MbA biosynthesis has been reconstructed in Nicotiana benthamiana using montbretia genes for the assembly of MbA from its various different building blocks. However, in addition to smaller amounts of MbA, the therapeutically inactive montbretin B (MbB) was the major product of this metabolic engineering effort. MbA and MbB differ in a single hydroxyl group of their acyl side chains, which are derived from caffeoyl-CoA and coumaroyl-CoA, respectively. Biosynthesis of both MbA and MbB also require coumaroyl-CoA for the formation of the myricetin core. Caffeoyl-CoA and coumaroyl-CoA are formed in the central phenylpropanoid pathway by acyl activating enzymes (AAEs) known as 4-coumaroyl-CoA ligases (4CLs). Here we investigated a small family of montbretia AAEs and 4CLs, and their possible contribution to montbretin biosynthesis.
Results
Transcriptome analysis for gene expression patterns related to montbretin biosynthesis identified eight different montbretia AAEs belonging to four different clades. Enzyme characterization identified 4CL activity for two clade IV members, Cc4CL1 and Cc4CL2, converting different hydroxycinnamic acids into the corresponding CoA thioesters. Both enzymes preferred coumaric acid over caffeic acid as a substrate in vitro. While expression of montbretia AAEs did not enhance MbA biosynthesis in N. benthamiana, we demonstrated that both Cc4CLs can be used to activate coumaric and caffeic acid towards flavanone biosynthesis in yeast (Saccharomyces cerevisiae).
Conclusions
Montbretia expresses two functional 4CLs, but neither of them is specific for the formation of caffeoyl-CoA. Based on differential expression analysis and phylogeny Cc4CL1 is most likely involved in MbA biosynthesis, while Cc4CL2 may contribute to lignin biosynthesis. Both Cc4CLs can be used for flavanone production to support metabolic engineering of MbA in yeast.
</jats:sec
Identification and Characterization of trans-Isopentenyl Diphosphate Synthases Involved in Herbivory-Induced Volatile Terpene Formation in Populus trichocarpa
In response to insect herbivory, poplar releases a blend of volatiles that plays important roles in plant defense. Although the volatile bouquet is highly complex and comprises several classes of compounds, it is dominated by mono- and sesquiterpenes. The most common precursors for mono- and sesquiterpenes, geranyl diphosphate (GPP) and (E,E)-farnesyl diphosphate (FPP), respectively, are in general produced by homodimeric or heterodimeric trans-isopentenyl diphosphate synthases (trans-IDSs) that belong to the family of prenyltransferases. To understand the molecular basis of herbivory-induced terpene formation in poplar, we investigated the trans-IDS gene family in the western balsam poplar Populus trichocarpa. Sequence comparisons suggested that this species possesses a single FPP synthase gene (PtFPPS1) and four genes encoding two large subunits (PtGPPS1.LSU and PtGPPS2.LSU) and two small subunits (PtGPPS.SSU1 and PtGPPS.SSU2) of GPP synthases. Transcript accumulation of PtGPPS1.LSU and PtGPPS.SSU1 was significantly upregulated upon leaf herbivory, while the expression of PtFPPS1, PtGPPS2.LSU, and PtGPPS.SSU2 was not influenced by the herbivore treatment. Heterologous expression and biochemical characterization of recombinant PtFPPS1, PtGPPS1.LSU, and PtGPPS2.LSU confirmed their respective IDS activities. Recombinant PtGPPS.SSU1 and PtGPPS.SSU2, however, had no enzymatic activity on their own, but PtGPPS.SSU1 enhanced the GPP synthase activities of PtGPPS1.LSU and PtGPPS2.LSU in vitro. Altogether, our data suggest that PtGPPS1.LSU and PtGPPS2.LSU in combination with PtGPPS.SSU1 may provide the substrate for herbivory-induced monoterpene formation in P. trichocarpa. The sole FPP synthase PtFPPS1 likely produces FPP for both primary and specialized metabolism in this plant species.</jats:p
Herbivore-induced volatile emission from old-growth black poplar trees under field conditions
AbstractHerbivory is well known to trigger increased emission of volatile organic compounds (VOCs) from plants, but we know little about the responses of mature trees. We measured the volatiles emitted by leaves of old-growth black poplar (Populus nigra) trees after experimental damage by gypsy moth (Lymantria dispar) caterpillars in a floodplain forest, and studied the effect of herbivory on the transcript abundance of two genes involved in the biosynthesis of VOCs, and the accumulation of defence phytohormones. Herbivory significantly increased volatile emission from the experimentally damaged foliage, but not from adjacent undamaged leaves in the damaged branches (i.e., no systemic response). Methylbutyraldoximes, 4,8-dimethyl-1,3,7-nonatriene (DMNT), (Z)-3-hexenol and (E)-β-ocimene, amongst other compounds, were found to be important in distinguishing the blend of herbivore-damaged vs. undamaged leaves. Herbivory also increased expression of PnTPS3 (described here for the first time) and PnCYP79D6-v4 genes at the damaged sites, these genes encode for an (E)-β-ocimene synthase and a P450 enzyme involved in aldoxime formation, respectively, demonstrating de novo biosynthesis of the volatiles produced. Herbivore-damaged leaves had significantly higher levels of jasmonic acid and its conjugate (−)-jasmonic acid-isoleucine. This study shows that mature trees in the field have a robust response to herbivory, producing induced volatiles at the damaged sites even after previous natural herbivory and under changing environmental conditions, however, further studies are needed to establish whether the observed absence of systemic responses is typical of mature poplar trees or if specific conditions are required for their induction.</jats:p
