40 research outputs found

    Selection criteria for early breast cancer patients in the DBCG proton trial – The randomised phase III trial strategy

    Get PDF
    Background and purpose Adjuvant radiotherapy of internal mammary nodes (IMN) improves survival in high-risk early breast cancer patients but inevitably leads to more dose to heart and lung. Target coverage is often compromised to meet heart/lung dose constraints. We estimate heart and lung dose when target coverage is not compromised in consecutive patients. These estimates are used to guide the choice of selection criteria for the randomised Danish Breast Cancer Group (DBCG) Proton Trial.Materials and methods 179 breast cancer patients already treated with loco-regional IMN radiotherapy from 18 European departments were included. If the clinically delivered treatment plan did not comply with defined target coverage requirements, the plan was modified retrospectively until sufficient coverage was reached. The choice of selection criteria was based on the estimated number of eligible patients for different heart and lung dose thresholds in combination with proton therapy capacity limitations and dose-response relationships for heart and lung.Results Median mean heart dose was 3.0 Gy (range, 1.1-8.2 Gy) for left-sided and 1.4 Gy (0.4-11.5 Gy) for right-sided treatment plans. Median V17Gy/V20Gy (hypofractionated/normofractionated plans) for ipsilateral lung was 31% (9-57%). The DBCG Radiotherapy Committee chose mean heart dose ≥ 4 Gy and/or lung V17Gy/V20Gy ≥ 37% as thresholds for inclusion in the randomised trial. Using these thresholds, we estimate that 22% of patients requiring loco-regional IMN radiotherapy will be eligible for the trial.Conclusion The patient selection criteria for the DBCG Proton Trial are mean heart dose ≥ 4 Gy and/or lung V17Gy/V20Gy ≥ 37%

    Australia's National Bowel Cancer Screening Program: does it work for Indigenous Australians?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite a lower incidence of bowel cancer overall, Indigenous Australians are more likely to be diagnosed at an advanced stage when prognosis is poor. Bowel cancer screening is an effective means of reducing incidence and mortality from bowel cancer through early identification and prompt treatment. In 2006, Australia began rolling out a population-based National Bowel Cancer Screening Program (NBCSP) using the Faecal Occult Blood Test. Initial evaluation of the program revealed substantial disparities in bowel cancer screening uptake with Indigenous Australians significantly less likely to participate in screening than the non-Indigenous population.</p> <p>This paper critically reviews characteristics of the program which may contribute to the discrepancy in screening uptake, and includes an analysis of organisational, structural, and socio-cultural barriers that play a part in the poorer participation of Indigenous and other disadvantaged and minority groups.</p> <p>Methods</p> <p>A search was undertaken of peer-reviewed journal articles, government reports, and other grey literature using electronic databases and citation snowballing. Articles were critically evaluated for relevance to themes that addressed the research questions.</p> <p>Results</p> <p>The NBCSP is not reaching many Indigenous Australians in the target group, with factors contributing to sub-optimal participation including how participants are selected, the way the screening kit is distributed, the nature of the test and comprehensiveness of its contents, cultural perceptions of cancer and prevailing low levels of knowledge and awareness of bowel cancer and the importance of screening.</p> <p>Conclusions</p> <p>Our findings suggest that the population-based approach to implementing bowel cancer screening to the Australian population unintentionally excludes vulnerable minorities, particularly Indigenous and other culturally and linguistically diverse groups. This potentially contributes to exacerbating the already widening disparities in cancer outcomes that exist among Indigenous Australians. Modifications to the program are recommended to facilitate access and participation by Indigenous and other minority populations. Further research is also needed to understand the needs and social and cultural sensitivities of these groups around cancer screening and inform alternative approaches to bowel cancer screening.</p

    Treatment Planning for Challenging Anatomies

    No full text
    Treatment planning procedures are set up to obtain optimised dose distributions for the “average” patient. Whereas with individualisation of treatment planning a good compromise between dose objectives for the target volumes and dose constraints for the organs at risk can be obtained, some clinical cases demand creative and highly individualised approaches, especially in cases with challenging anatomies. In this section, we provide you with a few such examples, without the ambition to being exhaustive

    Volumetric modulated arc therapy and breath-hold in image-guided locoregional left-sided breast irradiation

    No full text
    Item does not contain fulltextPURPOSE: To investigate the effects of using volumetric modulated arc therapy (VMAT) and/or voluntary moderate deep inspiration breath-hold (vmDIBH) in the radiation therapy (RT) of left-sided breast cancer including the regional lymph nodes. MATERIALS AND METHODS: For 13 patients, four treatment combinations were compared; 3D-conformal RT (i.e., forward IMRT) in free-breathing 3D-CRT(FB), 3D-CRT(vmDIBH), 2 partial arcs VMAT(FB), and VMAT(vmDIBH). Prescribed dose was 42.56 Gy in 16 fractions. For 10 additional patients, 3D-CRT and VMAT in vmDIBH only were also compared. Results : Dose conformity, PTV coverage, ipsilateral and total lung doses were significantly better for VMAT plans compared to 3D-CRT. Mean heart dose (D(mean,heart)) reduction in 3D-CRT(vmDIBH) was between 0.9 and 8.6 Gy, depending on initial D(mean,heart) (in 3D-CRT(FB) plans). VMAT(vmDIBH) reduced the D(mean,heart) further when D(mean,heart) was still >3.2 Gy in 3D-CRT(vmDIBH). Mean contralateral breast dose was higher for VMAT plans (2.7 Gy) compared to 3DCRT plans (0.7 Gy). CONCLUSIONS: VMAT and 3D-CRT(vmDIBH) significantly reduced heart dose for patients treated with locoregional RT of left-sided breast cancer. When Dmean,heart exceeded 3.2 Gy in 3D-CRT(vmDIBH) plans, VMAT(vmDIBH) resulted in a cumulative heart dose reduction. VMAT also provided better target coverage and reduced ipsilateral lung dose, at the expense of a small increase in the dose to the contralateral breast

    Accelerated partial breast irradiation (APBI): Are breath-hold and volumetric radiation therapy techniques useful?

    No full text
    BACKGROUND: In a selective group of patients accelerated partial breast irradiation (APBI) might be applied after conservative breast surgery to reduce the amount of irradiated healthy tissue. The role of volumetric modulated arc therapy (VMAT) and voluntary moderately deep inspiration breath-hold (vmDIBH) techniques in further reducing irradiated healthy--especially heart--tissue is investigated. MATERIAL AND METHODS: For 37 partial breast planning target volumes (PTVs), three-dimensional conformal radiotherapy (3D-CRT) (3-5 coplanar or non-coplanar 6 and/or 10 MV beams) and VMAT (two partial 6 MV arcs) plans were made on CTs acquired in free-breathing (FB) and/or in vmDIBH. Dose-volume parameters for the PTV, heart, lungs, and breasts were compared. Results : Better dose conformity was achieved with VMAT compared to 3D-CRT (conformity index 1.24+/-0.09 vs. 1.49+/-0.20). Non-PTV ipsilateral breast receiving >/=50% of the prescribed dose was on average reduced by 28% in VMAT plans compared to 3D-CRT plans. Mean heart dose (MHD) reduced from 2.0 (0.1-5.1) Gy in 3D-CRT(FB) to 0.6 (0.1-1.6) Gy in VMAT(vmDIBH). VMAT is beneficial for MHD reduction if MHD with 3D-CRT exceeds 0.5Gy. Cardiac dose reduction as a result of VMAT increases with increasing initial MHD, and adding vmDIBH reduces the cardiac dose further. Mean dose to the ipsilateral lung decreased from 3.7 (0.7-8.7) to 1.8 (0.5-4.0) Gy with VMAT(vmDIBH) compared to 3D-CRT(FB). VMAT resulted in a slight increase in the contralateral breast dose (DMean) always remaining <1.9 Gy). CONCLUSIONS: For APBI patients, VMAT improves PTV dose conformity and delivers lower doses to the ipsilateral breast and lung compared to 3D-CRT. This goes at the cost of a slight but acceptable increase of the contralateral breast dose. VMAT reduces cardiac dose if MHD exceeds 0.5 Gy for 3D-CRT. Adding vmDIBH results in a further reduction of heart and ipsilateral lung dose

    Should breathing adapted radiotherapy also be applied for right-sided breast irradiation?

    No full text
    Contains fulltext : 171507.pdf (publisher's version ) (Closed access)BACKGROUND: Voluntary moderate deep inspiration breath-hold (vmDIBH) is widely used for left sided breast cancer patients. The purpose of this study was to investigate the usefulness of vmDIBH in local and locoregional radiation therapy (RT) of right-sided breast cancer. MATERIALS AND METHODS: For fourteen right-sided breast cancer patients, 3D-conformal (3D-CRT) RT plans (i.e., forward IMRT) were calculated on free-breathing (FB) 3D-CRT(FB) and vmDIBHCT-scans, for local- as well as locoregional breast treatment, with and without internal mammary nodes (IMN). Dose volume parameters were compared. Results : For local breast treatment, no relevant reduction in mean lung dose (MLD) was found. For locoregional breast treatment without IMN, the average MLD reduced from 6.5 to 5.4 Gy (p < 0.005) for the total lung and from 11.2 to 9.7 Gy (p < 0.005) for the ipsilateral lung. For locoregional breast treatment with IMN, the average MLD reduced from 10.8 to 9.1 Gy (p < 0.005) for the total lung and from 18.7 to 16.2 Gy (p < 0.005) for the ipsilateral lung, whilea small reduction in mean heart dose of 0.4 Gy (p = 0.07) was also found. CONCLUSIONS: Breathing adapted radiation therapy in left-sided breast cancer patients is becoming widely introduced. As a result of the slight reduction in lung dose found for locoregional right-sided breast cancer treatment in this study, a slightly lower risk of pneumonitis and secondary lung cancer (in ever smoking patients) can be expected.In addition, for some patients the heart dose will also be reduced by more than 0.5 up to 2.6 Gy. We therefore suggest to also apply breath-hold for locoregional irradiation of right-sided breast cancer patients

    Quality assurance and safety of hippocampal avoidance prophylactic cranial irradiation in the multicenter randomized phase III trial (NCT01780675)

    Get PDF
    Objective: NCT01780675, a multicenter randomized phase III trial of prophylactic cranial irradiation (PCI) versus PCI with hippocampal sparing in small cell lung cancer (SCLC) investigated neurocognitive decline and safety. As part of quality assurance, we evaluated if hippocampal avoidance (HA)-PCI was performed according to the NCT01780675 trial protocol instructions, and performed a safety analysis to study the incidence and location of brain metastases for patients treated with HA-PCI.Methods: This retrospective analysis evaluated the quality of the irradiation given in the randomized controlled trial (RCT) comparing SCLC patients receiving PCI with or without hippocampal avoidance, using intensity modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT). The dose distribution for each patient receiving HA-PCI was retrieved and analyzed to evaluate if the treatment dose constraints were met. A questionnaire was sent out to all participating sites, and data on radiotherapy technique, pre-treatment dummy runs, phantom measurements and treatment electronic portal imaging device (EPID) dosimetry were collected and analyzed. As part of the safety analysis, the follow-up magnetic resonance imaging (MRI) or computerized tomography (CT) scans on which cranial disease progression was first diagnosed were collected and matched to the radiotherapy planning dose distribution. The matched scans were reviewed to analyze the location of the brain metastases in relation to the prescribed dose.Results: A total of 168 patients were randomized in the NCT01780675 trial in 10 centers in the Netherlands and Belgium from April 2013 until March 2018. Eighty two patients receiving HA-PCI without evidence of brain metastases were analyzed. All patients were treated with 25 Gy in 10 fractions. Dummy runs and phantom measurements were performed in all institutions prior to enrolling patients into the study. The radiotherapy (RT) plans showed a median mean bilateral hippocampal dose of 8.0 Gy, range 5.4–11.4 (constraint ≤ 8.5 Gy). In six patients (7.3%) there was a protocol violation of the mean dose in one or both hippocampi. In four of these six patients (4.9%) the mean dose to both hippocampi exceeded the constraint, in 1 patient (1.2%) only the left and in 1 patient (1.2%) only the right hippocampal mean dose was violated (average median dose left and right 8.9 Gy). All patients met the trial dose constraint of V115% PTV ≤ 1%; however the Dmax PTV constraint of ≤ 28.75 Gy was violated in 22.0% of the patients. The safety analysis showed that 14 patients (17.1%) developed cranial progression. No solitary brain metastases in the underdosed region were found. Two out of 11 patients with multiple brain metastasis developed metastasis in the underdosed region(s).Conclusions: The radiotherapy quality within the HA-PCI trial is performed according to the protocol guidelines. The dose constraints to the hippocampi are met in the vast majority of cases. In all patients, the volume of the brain for which a higher dose was accepted, is according to the trial. However, within this volume there are small areas with higher doses than advised.</p
    corecore