4 research outputs found
Diffusion of OXA-48 carbapenemase among urinary isolates of Klebsiella pneumoniae in non-hospitalized elderly patients
Background: Recently, a dramatic increase of Klebsiella pneumoniae positive for OXA-48 β-lactamases was observed first in the hospital setting and later in the long-term care facilities (LTCFs) and community in the Zagreb County, particularly, in urinary isolates. The aim of the study was to analyse the epidemiology and the mechanisms of antibiotic resistance of OXA-48 carbapenemase producing K. pneumoniae strains isolated from urine of non-hospitalized elderly patients.
------
Results: The isolates were classified into two groups: one originated from the LTCFs and the other from the community. Extended-spectrum β-lactamases (ESBLs) were detected by double disk-synergy (DDST) and combined disk tests in 55% of the isolates (51/92). The ESBL-positive isolates exhibited resistance to expanded-spectrum cephalosporins (ESC) and in majority of cases to gentamicin. LTCFs isolates showed a significantly lower rate of additional ESBLs and consequential resistance to ESC and a lower gentamicin resistance rate compared to the community isolates, similarly to hospital isolates in Zagreb, pointing out to the possible transmission from hospitals.ESBL production was associated with group 1 of CTX-M or SHV-12 β-lactamases. Ertapenem resistance was transferable from only 12 isolates. blaOXA-48 genes were carried by IncL plasmid in 42 isolates. In addition IncFII and IncFIB were identified in 18 and 2 isolates, respectively. Two new sequence types were reported: ST4870 and ST4781.
-----
Conclusions: This study showed eruptive and extensive diffusion of OXA-48 carbapenemase to LTCFs and community population in Zagreb County, particularly affecting patients with UTIs and urinary catheters. On the basis of susceptibility testing, β-lactamase production, conjugation experiments, MLST and plasmid characterization it can be concluded that there was horizontal gene transfer between unrelated isolates, responsible for epidemic spread of OXA-48 carbapenemase in the LTCFs and the community The rapid spread of OXA-48 producing K. pneumoniae points out to the shortcomings in the infection control measures
Green Approaches for the Extraction of Banana Peel Phenolics Using Deep Eutectic Solvents
Banana peels, comprising about 35% of the fruit’s weight, are often discarded, posing environmental and economic issues. This research focuses on recycling banana peel waste by optimizing advanced extraction techniques, specifically microwave-assisted (MAE) and ultrasound-assisted extraction (UAE), for the isolation of phenolic compounds. A choline chloride-based deep eutectic solvent (DES) with glycerol in a 1:3 ratio with a water content of 30% (w/w) was compared to 30% ethanol. Parameters, including sample-to-solvent ratio (SSR), extraction time, and temperature for MAE or amplitude for UAE, were varied. Extracts were analyzed for hydroxycinnamic acid (HCA) and flavonoid content, and antioxidant activity using FRAP and ABTS assays. DES outperformed ethanol, with HCA content ranging from 180.80 to 765.92 mg/100 g and flavonoid content from 96.70 to 531.08 mg/100 g, accompanied by higher antioxidant activity. Optimal MAE conditions with DES were an SSR of 1:50, a temperature of 60 °C, and a time of 10 min, whereas an SSR of 1:60, time of 5 min, and 75% amplitude were optimal for UAE. The polyphenolic profile of optimized extracts comprised 19 individual compounds belonging to the class of flavonols, flavan-3-ols, and phenolic acids. This study concluded that DESs, with their superior extraction efficiency and environmental benefits, are promising solvents for the extraction of high-value bioactive compounds from banana peels and offer significant potential for the food and pharmaceutical industries
VIM-2 beta-lactamase in Pseudomonas aeruginosa isolates from Zagreb, Croatia
The aim of this investigation was to characterize metallo-beta-lactamases (MBLs) in Pseudomonas aeruginosa isolates from Zagreb, Croatia. One hundred P. aeruginosa isolates with reduced susceptibility to either imipenem or meropenem were tested for the production of MBLs by MBL-Etest. The susceptibility to a wide range of antibiotics was determined by broth microdilution method. The presence of bla(MBL) genes was detected by polymerase chain reaction (PCR). Hydrolysis of 0.1 mM imipenem by crude enzyme preparations of beta-lactamases was monitored by UV spectrophotometer. Outer membrane proteins were prepared and analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Six out of 100 isolates were positive for MBLs by Etest. All strains were resistant to gentamicin, ceftazidime and cefotaxime, and all except 1 were resistant to imipenem. Six strains positive for MBLs by Etest were identified as VIM MBL-producers by PCR. Sequencing of bla(VIM) genes revealed the production of VIM-2 beta-lactamase in all 6 strains. This investigation proved the occurrence of VIM-2 beta-lactamase among P. aeruginosa strains from Zagreb, Croatia. VIM-2 beta-lactamase with similar properties has previously been described in another region of Croatia and in Italy, France, Spain, Greece, Taiwan and South Korea, suggesting that this type of enzyme is widespread in the Mediterranean region of Europe and in the Far East
Emergence and Spread of Enterobacterales with Multiple Carbapenemases after COVID-19 Pandemic
Resistance to carbapenems in Enterobacterales has become a matter of the highest concern in the last decade. Recently, Enterobacterales harboring multiple carbapenemases were detected in three hospital centers in Croatia and in the outpatient setting, posing a serious therapeutic challenge for clinicians. In this study, we analyzed eight Klebsiella pneumoniae and two Enterobacter cloacae complex isolates with multiple carbapenemases, with regard to antibiotic susceptibility, β-lactamase production and plasmid content. The isolates demonstrated uniform resistance to amoxicillin/clavulanate, piperacillin/tazobactam, cefuroxime, ceftazidime, cefotaxime, ceftriaxone and ertapenem. Among novel β-lactam/inhibitor combinations, ceftazidime/avibactam exhibited moderate activity, with 50% of isolates susceptible. All isolates demonstrated resistance to imipenem/cilastatin/relebactam, and all but one to ceftolozane/tazobactam. Four isolates exhibited a multidrug-resistant phenotype (MDR), whereas six were allocated to an extensively drug-resistant phenotype (XDR). OKNV detected three combinations of carbapenemases: OXA-48+NDM (five isolates), OXA-48+VIM (three isolates) and OXA-48+KPC (two isolates). Inter-array testing identified a wide variety of resistance genes for β-lactam antibiotics: blaCTX-M-15, blaTEM, blaSHV, blaOXA-1, blaOXA-2, blaOXA-9, aminoglycosides: aac6, aad, rmt, arm and aph, fluoroquinolones: qnrA, qnrB and qnrS, sulphonamides: sul1 and sul2 and trimethoprim: dfrA5, dfrA7, dfrA14, dfrA17 and dfrA19. mcr genes were reported for the first time in Croatia. This study demonstrated the ability of K. pneumoniae and E. cloacae to acquire various resistance determinants under the selection pressure of antibiotics widely used during the COVID-19 pandemic. The novel inter-array method showed good correlation with OKNV and PCR, although some discrepancies were found