266 research outputs found

    Analysis for genotyping Duffy blood group in inhabitants of Sudan, the Fourth Cataract of the Nile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic polymophisms of the Duffy antigen receptor for the chemokines (DARC) gene successfully protected against blood stage infection by <it>Plasmodium vivax </it>infection. The Fy (a-, b-) phenotype is predominant among African populations, particularly those originating from West Africa, and it is rare among non-African populations. The aim of this study was to analyse the frequency of four Duffy blood groups based on SNPs (T-33C, G125A, G298A and C5411T) in two local tribes of Sudanese Arabs, the <it>Shagia </it>and <it>Manasir</it>, which are both from the region of the Fourth Nile cataract in Sudan.</p> <p>Methods</p> <p>An analysis of polymorphisms was performed on 217 individuals (126 representatives of the <it>Shagia </it>tribe and 91 of the <it>Manasir)</it>. Real-time PCR and TaqMan Genotyping Assays were used to study the prevalence of alleles and genotypes.</p> <p>Results</p> <p>The analysis of allelic and genotype frequency in the T-33C polymorphisms demonstrated a significant dominance of the <it>C </it>allele and <it>CC </it>genotype (OR = 0.53 [0.32-0.88]; p = 0.02) in both tribes. The G125A polymorphism is associated with phenotype Fy(a-, b-) and was identified in 83% of <it>Shagia </it>and 77% of <it>Manasir</it>. With regard to G298A polymorphisms, the genotype frequencies were different between the tribes (p = 0,002) and no single <it>AA </it>homozygote was found. Based on four SNPs examined, 20 combinations of genotypes for the <it>Shagia </it>and <it>Manasir </it>tribes were determined. The genotype <it>CC/AA/GG/CT </it>occurred most often in <it>Shagia </it>tribe (45.9%) but was rare in the <it>Manasir </it>tribe (6.6%) (p < 0.001 <it>Shagia </it>versus <it>Manasir</it>). The <it>FY*A<sup>ES </sup></it>allele was identified in both analysed tribes. The presence of individuals with the <it>FY*A/FY*A </it>genotype was demonstrated only in the <it>Shagia </it>tribe.</p> <p>Conclusion</p> <p>This is probably the first report showing genotypically Duffy-negative people who carry both <it>FY*B<sup>ES </sup></it>and <it>FY*A<sup>ES</sup></it>. The identification of the <it>FY*A<sup>ES </sup></it>allele in both tribes may be due to admixture of the non-African genetic background. Taken as a whole, allele and genotype frequencies between the <it>Shagia </it>and the <it>Manasir </it>were statistically different. However, the presence of individuals with the <it>FY*A/FY*A </it>genotype was demonstrated only in the <it>Shagia </it>tribe.</p

    Circulating Microbial Products and Acute Phase Proteins as Markers of Pathogenesis in Lymphatic Filarial Disease

    Get PDF
    Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Dysregulated host inflammatory responses leading to systemic immune activation are thought to play a central role in filarial disease pathogenesis. We measured the plasma levels of microbial translocation markers, acute phase proteins, and inflammatory cytokines in individuals with chronic filarial pathology with (CP Ag+) or without (CP Ag−) active infection; with clinically asymptomatic infections (INF); and in those without infection (endemic normal [EN]). Comparisons between the two actively infected groups (CP Ag+ compared to INF) and those without active infection (CP Ag− compared to EN) were used preliminarily to identify markers of pathogenesis. Thereafter, we tested for group effects among all the four groups using linear models on the log transformed responses of the markers. Our data suggest that circulating levels of microbial translocation products (lipopolysaccharide and LPS-binding protein), acute phase proteins (haptoglobin and serum amyloid protein-A), and inflammatory cytokines (IL-1β, IL-12, and TNF-α) are associated with pathogenesis of disease in lymphatic filarial infection and implicate an important role for circulating microbial products and acute phase proteins

    Multi-Level Targeting of the Phosphatidylinositol-3-Kinase Pathway in Non-Small Cell Lung Cancer Cells

    Get PDF
    Introduction: We assessed expression of p85 and p110a PI3K subunits in non-small cell lung cancer (NSCLC) specimens and the association with mTOR expression, and studied effects of targeting the PI3K/AKT/mTOR pathway in NSCLC cell lines. Methods: Using Automated Quantitative Analysis we quantified expression of PI3K subunits in two cohorts of 190 and 168 NSCLC specimens and correlated it with mTOR expression. We studied effects of two PI3K inhibitors, LY294002 and NVP-BKM120, alone and in combination with rapamycin in 6 NSCLC cell lines. We assessed activity of a dual PI3K/mTOR inhibitor

    Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian cancer risk

    Get PDF
    Rare and low frequency variants are not well covered in most germline genotyping arrays and are understudied in relation to epithelial ovarian cancer (EOC) risk. To address this gap, we used genotyping arrays targeting rarer protein-coding variation in 8,165 EOC cases and 11,619 controls from the international Ovarian Cancer Association Consortium (OCAC). Pooled association analyses were conducted at the variant and gene level for 98,543 variants directly genotyped through two exome genotyping projects. Only common variants that represent or are in strong linkage disequilibrium (LD) with previously-identified signals at established loci reached traditional thresholds for exome-wide significance (P ( )P≥5.0 ×10 (-)  (7)) were detected for rare and low-frequency variants at 16 novel loci. Four rare missense variants were identified (ACTBL2 rs73757391 (5q11.2), BTD rs200337373 (3p25.1), KRT13 rs150321809 (17q21.2) and MC2R rs104894658 (18p11.21)), but only MC2R rs104894668 had a large effect size (OR = 9.66). Genes most strongly associated with EOC risk included ACTBL2 (PAML = 3.23 × 10 (-)  (5); PSKAT-o = 9.23 × 10 (-)  (4)) and KRT13 (PAML = 1.67 × 10 (-)  (4); PSKAT-o = 1.07 × 10 (-)  (5)), reaffirming variant-level analysis. In summary, this large study identified several rare and low-frequency variants and genes that may contribute to EOC susceptibility, albeit with possible small effects. Future studies that integrate epidemiology, sequencing, and functional assays are needed to further unravel the unexplained heritability and biology of this disease

    A Deep Insight into the Sialome of Rhodnius neglectus, a vector of chagas disease

    Get PDF
    Background Triatomines are hematophagous insects that act as vectors of Chagas disease. Rhodnius neglectus is one of these kissing bugs found, contributing to the transmission of this American trypanosomiasis. The saliva of hematophagous arthropods contains bioactive molecules responsible for counteracting host haemostatic, inflammatory, and immuneresponses. Methods/Principal Findings Next generation sequencing and mass spectrometry-based protein identification were performed to investigate the content of triatomine R. neglectus saliva.We deposited 4,230 coding DNA sequences (CDS) in GenBank. A set of 636 CDS of proteins of putative secretory nature was extracted from the assembled reads, 73 of them confirmed by proteomic analysis. The sialome of R. neglectus was characterized and serine protease transcripts detected. The presence of ubiquitous protein families was revealed, including lipocalins, serine protease inhibitors, and antigen-5. Metalloproteases, disintegrins, and odorant binding protein families were less abundant. Conclusions/Significance The data presented improve our understanding of hematophagous arthropod sialomes, and aid in understanding hematophagy and the complex interplay among vectors and their vertebrate hosts

    A transcriptome-wide association study among 97,898 women to identify candidate susceptibility genes for epithelial ovarian cancer risk

    Get PDF
    Large-scale genome-wide association studies (GWAS) have identified approximately 35 loci associated with epithelial ovarian cancer (EOC) risk. The majority of GWAS-identified disease susceptibility variants are located in non-coding regions, and causal genes underlying these associations remain largely unknown. Here we performed a transcriptome-wide association study to search for novel genetic loci and plausible causal genes at known GWAS loci. We used RNA sequencing data (68 normal ovarian-tissue samples from 68 individuals and 6,124 cross-tissue samples from 369 individuals) and high-density genotyping data from European descendants of the Genotype-Tissue Expression (GTEx V6) project to build ovarian and cross-tissue models of genetically regulated expression using elastic net methods. We evaluated 17,121 genes for their cis-predicted gene expression in relation to EOC risk using summary statistics data from GWAS of 97,898 women, including 29,396 EOC cases. With a Bonferroni-corrected significance level of P<2.2×10-6, we identified 35 genes including FZD4 at 11q14.2 (Z=5.08, P=3.83×10-7, the cross-tissue model; 1 Mb away from any GWAS-identified EOC risk variant), a potential novel locus for EOC risk. All other 34 significantly-associated genes were located within 1 Mb of known GWAS-identified loci, including 23 genes at 6 loci not previously linked to EOC risk. Upon conditioning on nearby known EOC GWAS-identified variants, the associations for 31 genes disappeared and 3 genes remained (P<1.47 x 10-3). These data identify one novel locus (FZD4) and 34 genes at 13 known EOC risk loci associated with EOC risk, providing new insights into EOC carcinogenesis

    Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain

    Get PDF
    The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain’s innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed

    Platinum drugs in the treatment of non-small-cell lung cancer

    Get PDF
    The use of chemotherapy is considered standard therapy in patients with locally advanced non-small-cell lung cancer that cannot be treated with radiotherapy and in those with metastatic non-small-cell lung cancer and good performance status. This approach is also accepted in patients with earlier stage disease, when combined with radiotherapy in those with non-resectable locally advanced disease, or in the preoperative setting. Randomised clinical studies and meta-analyses of the literature have confirmed the beneficial survival effect of platinum-based chemotherapy. Cisplatin and carboplatin have been successfully used with other drugs in a wide variety of well-established two-drug combinations while three-drug combinations are still under investigation. Cisplatin and carboplatin use is limited by toxicity and inherent resistance. These considerations have prompted research into new platinum agents, such as the trinuclear platinum agent BBR3464, the platinum complex ZD0473 and oxaliplatin. These compounds could be developed in combination with agents such as paclitaxel, gemcitabine or vinorelbine in patients with advanced and/or refractory solid tumours

    Exome screening to identify loss-of-function mutations in the rhesus macaque for development of preclinical models of human disease

    Get PDF
    BACKGROUND: Exome sequencing has been utilized to identify genetic variants associated with disease in humans. Identification of loss-of-function mutations with exome sequencing in rhesus macaques (Macaca mulatta) could lead to valuable animal models of genetic disease. Attempts have been made to identify variants in rhesus macaques by aligning exome data against the rheMac2 draft genome. However, such efforts have been impaired due to the incompleteness and annotation errors associated with rheMac2. We wished to determine whether aligning exome reads against our new, improved rhesus genome, MacaM, could be used to identify high impact, loss-of-function mutations in rhesus macaques that would be relevant to human disease. RESULTS: We compared alignments of exome reads from four rhesus macaques, the reference animal and three unrelated animals, against rheMac2 and MacaM. Substantially more reads aligned against MacaM than rheMac2. We followed the Broad Institute’s Best Practice guidelines for variant discovery which utilizes the Genome Analysis Toolkit to identify high impact mutations. When rheMac2 was used as the reference genome, a large number of apparent false positives were identified. When MacaM was used as the reference genome, the number of false positives was greatly reduced. After examining the variant analyses conducted with MacaM as reference genome, we identified two putative loss-of-function mutations, in the heterozygous state, in genes related to human health. Sanger sequencing confirmed the presence of these mutations. We followed the transmission of one of these mutations (in the butyrylthiocholine gene) through three generations of rhesus macaques. Further, we demonstrated a functional decrease in butyrylthiocholinesterase activity similar to that observed in human heterozygotes with loss-of-function mutations in the same gene. CONCLUSIONS: The new MacaM genome can be effectively utilized to identify loss-of-function mutations in rhesus macaques without generating a high level of false positives. In some cases, heterozygotes may be immediately useful as models of human disease. For diseases where homozygous mutants are needed, directed breeding of loss-of-function heterozygous animals could be used to create rhesus macaque models of human genetic disease. The approach we describe here could be applied to other mammals, but only if their genomes have been improved beyond draft status. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2509-5) contains supplementary material, which is available to authorized users
    • …
    corecore