268 research outputs found

    Combination of Id2 Knockdown Whole Tumor Cells and Checkpoint Blockade: A Potent Vaccine Strategy in a Mouse Neuroblastoma Model.

    Get PDF
    Tumor vaccines have held much promise, but to date have demonstrated little clinical success. This lack of success is conceivably due to poor tumor antigen presentation combined with immuno-suppressive mechanisms exploited by the tumor itself. Knock down of Inhibitor of differentiation protein 2 (Id2-kd) in mouse neuroblastoma whole tumor cells rendered these cells immunogenic. Id2-kd neuroblastoma (Neuro2a) cells (Id2-kd N2a) failed to grow in most immune competent mice and these mice subsequently developed immunity against further wild-type Neuro2a tumor cell challenge. Id2-kd N2a cells grew aggressively in immune-compromised hosts, thereby establishing the immunogenicity of these cells. Therapeutic vaccination with Id2-kd N2a cells alone suppressed tumor growth even in established neuroblastoma tumors and when used in combination with immune checkpoint blockade eradicated large established tumors. Mechanistically, immune cell depletion studies demonstrated that while CD8+ T cells are critical for antitumor immunity, CD4+ T cells are also required to induce a sustained long-lasting helper effect. An increase in number of CD8+ T-cells and enhanced production of interferon gamma (IFNγ) was observed in tumor antigen stimulated splenocytes of vaccinated mice. More importantly, a massive influx of cytotoxic CD8+ T-cells infiltrated the shrinking tumor following combined immunotherapy. These findings show that down regulation of Id2 induced tumor cell immunity and in combination with checkpoint blockade produced a novel, potent, T-cell mediated tumor vaccine strateg

    A mechanism linking Id2-TGFβ crosstalk to reversible adaptive plasticity in neuroblastoma

    Get PDF
    The ability of high-risk neuroblastoma to survive unfavorable growth conditions and multimodal therapy has produced an elusive childhood cancer with remarkably poor prognosis. A novel phenomenon enabling neuroblastoma to survive selection pressure is its capacity for reversible adaptive plasticity. This plasticity allows cells to transition between highly proliferative anchorage dependent (AD) and slow growing, anoikis-resistant anchorage independent (AI) phenotypes. Both phenotypes are present in established mouse and human tumors. The differential gene expression profile of the two cellular phenotypes in the mouse Neuro2a cell line delineated pathways of proliferation in AD cells or tyrosine kinase activation/ apoptosis inhibition in AI cells. A 20 fold overexpression of inhibitor of differentiation 2 (Id2) was identified in AD cells while up-regulation of genes involved in anoikis resistance like PI3K/Akt, Erk, Bcl2 and integrins was observed in AI cells. Similarly, differential expression of Id2 and other genes of interest were also observed in the AD and AI phenotypes of human neuroblastoma cell lines, SK-N-SH and IMR-32; as well as in primary human tumor specimens. Forced down-regulation of Id2 in AD cells or overexpression in AI cells induced the cells to gain characteristics of the other phenotype. Id2 binds both TGFβ and Smad2/3 and appears critical for maintaining the proliferative phenotype at least partially through negative regulation of the TGFβ/Smad pathway. Simultaneously targeting the differential molecular pathways governing reversible adaptive plasticity resulted in 50% cure of microscopic disease and delayed tumor growth in established mouse neuroblastoma tumors. We present a mechanism that accounts for reversible adaptive plasticity and a molecular basis for combined targeted therapies in neuroblastoma

    MYCN Amplification Is Associated with Repressed Cellular Immunity in Neuroblastoma: An In Silico Immunological Analysis of TARGET Database

    Get PDF
    Purpose: RNA and DNA sequencing data are traditionally used to discern intrinsic cellular pathways in cancer pathogenesis, their utility for investigating the tumor microenvironment (TME) has not been fully explored. This study explores the use of sequencing data to investigate immunity within the TME. Experimental design: Here, we use immune cell fraction estimation analysis to determine the immune profiles in the microenvironment of neuroblastoma (NB) based on RNA-seq data in the TARGET database. The correlation between immune cell transcripts and prognosis in pediatric NB is also investigated. Results: In silico analysis revealed a strong inverse correlation between MYCNamplification and leukocyte infiltration. This finding was validated by immunohistochemistry analysis in tumor samples. Moreover, the abundance of CD4 T cells strongly associated with better patient survival regardless of MYCN gene amplification, while those of CD8 T cells, NK or B cells do not. Based on characteristic cytokine expression of CD4 subsets in tumors, the Th2 rather than Th1 levels were associated with better prognosis. Conclusion: We found that the in silico analysis of TARGET database reflected tumor immunity and was validated by the immunohistochemical tumor data. Our results reveal the association of MYCN amplification with repressed cellular immunity and the potential prognostic value of infiltrating CD4 T cell transcripts in pediatric NB. This analysis illustrates the potential role of MYCN in NB as a regulator of immune privilege and characterizes the power of in silico analysis for delineating cancer immunology and risk stratification

    T-cell activation is enhanced by targeting IL-10 cytokine production in toll-like receptor-stimulated macrophages

    Get PDF
    Toll-like receptor (TLR) agonists represent potentially useful cancer vaccine adjuvants in their ability to stimulate antigen-presenting cells (APCs) and subsequently amplify the cytotoxic T-cell response. The purpose of this study was to characterize APC responses to TLR activation and to determine the subsequent effect on lymphocyte activation. We exposed murine primary bone marrow-derived macrophages to increasing concentrations of agonists to TLRs 2, 3, 4, and 9. This resulted in a dose-dependent increase in production of not only tumor necrosis factor–alpha (TNF-α), a surrogate marker of the proinflammatory response, but also interleukin 10 (IL-10), a well-described inhibitory cytokine. Importantly, IL-10 secretion was not induced by low concentrations of TLR agonists that readily produced TNF-α. We subsequently stimulated lymphocytes with anti-CD3 antibody in the presence of media from macrophages activated with higher doses of TLR agonists and observed suppression of interferon gamma release. Use of both IL-10 knockout macrophages and IL-10 small-interfering RNA (siRNA) ablated this suppressive effect. Finally, IL-10 siRNA was successfully used to suppress CpG-induced IL-10 production in vivo. We conclude that TLR-mediated APC stimulation can induce a paradoxical inhibitory effect on T-cell activation mediated by IL-10

    Are Immune Modulating Single Nucleotide Polymorphisms Associated with Necrotizing Enterocolitis?

    Get PDF
    Necrotizing enterocolitis (NEC) is a devastating gastrointestinal emergency. The purpose of this study is to determine if functional single nucleotide polymorphisms (SNPs) in immune-modulating genes pre-dispose infants to NEC. After Institutional Review Board approval and parental consent, buccal swabs were collected for DNA extraction. TaqMan allelic discrimination assays and BglII endonuclease digestion were used to genotype specific inflammatory cytokines and TRIM21. Statistical analysis was completed using logistic regression. 184 neonates were analyzed in the study. Caucasian neonates with IL-6 (rs1800795) were over 6 times more likely to have NEC (p = 0.013; OR = 6.61, 95% CI 1.48-29.39), and over 7 times more likely to have Stage III disease (p = 0.011; OR = 7.13, (95% CI 1.56-32.52). Neonates with TGFβ-1 (rs2241712) had a decreased incidence of NEC-related perforation (p = 0.044; OR = 0.28, 95% CI: 0.08-0.97) and an increased incidence of mortality (p = 0.049; OR = 2.99, 95% CI: 1.01 - 8.86). TRIM21 (rs660) was associated with NEC-related intestinal perforation (p = 0.038; OR = 4.65, 95% CI 1.09-19.78). In premature Caucasian neonates, the functional SNP IL-6 (rs1800795) is associated with both the development and increased severity of NEC. TRIM21 (rs660) and TGFβ-1 (rs2241712) were associated with NEC- related perforation in all neonates in the cohort. These findings suggest a possible genetic role in the development of NEC

    Genomics in premature infants: A non-invasive strategy to obtain high-quality DNA

    Get PDF
    We used a cost-effective, non-invasive method to obtain high-quality DNA from buccal epithelial-cells (BEC) of premature infants for genomic analysis. DNAs from BEC were obtained from premature infants with gestational age ≤ 36 weeks. Short terminal repeats (STRs) were performed simultaneously on DNA obtained from the buccal swabs and blood from the same patient. The STR profiles demonstrated that the samples originated from the same individual and exclude any contamination by external DNAs. Whole exome sequencing was performed on DNAs obtained from BEC on premature infants with and without necrotizing enterocolitis, and successfully provided a total number of reads and variants corroborating with those obtained from healthy blood donors. We provide a proof of concept that BEC is a reliable and preferable source of DNA for high-throughput sequencing in premature infants

    A Functional Naturalism

    Get PDF
    I provide two arguments against value-free naturalism. Both are based on considerations concerning biological teleology. Value-free naturalism is the thesis that both (1) everything is, at least in principle, under the purview of the sciences and (2) all scientific facts are purely non-evaluative. First, I advance a counterexample to any analysis on which natural selection is necessary to biological teleology. This should concern the value-free naturalist, since most value-free analyses of biological teleology appeal to natural selection. My counterexample is unique in that it is likely to actually occur. It concerns the creation of synthetic life. Recent developments in synthetic biology suggest scientists will eventually be able to develop synthetic life. Such life, however, would not have any of its traits naturally selected for. Second, I develop a simple argument that biological teleology is a scientific but value-laden notion. Consequently, value-free naturalism is false. I end with some concluding remarks on the implications for naturalism, the thesis that (1). Naturalism may be salvaged only if we reject (2). (2) is a dogma that unnecessarily constrains our conception of the sciences. Only a naturalism that recognizes value-laden notions as scientifically respectable can be true. Such a naturalism is a functional naturalism

    Measuring the impact and costs of a universal group based parenting programme : protocol and implementation of a trial

    Get PDF
    Background Sub-optimal parenting is a common risk factor for a wide range of negative health, social and educational outcomes. Most parenting programmes have been developed in the USA in the context of delinquency prevention for targeted or indicated groups and the main theoretical underpinning for these programmes is behaviour management. The Family Links Nurturing Programme (FLNP) focuses on family relationships as well as behaviour management and is offered on a universal basis. As a result it may be better placed to improve health and educational outcomes. Developed in the UK voluntary sector, FLNP is popular with practitioners, has impressed policy makers throughout the UK, has been found to be effective in before/after and qualitative studies, but lacks a randomised controlled trial (RCT) evidence base. Methods/Design A multi-centre, investigator blind, randomised controlled trial of the FLNP with a target sample of 288 south Wales families who have a child aged 2-4 yrs living in or near to Flying Start/Sure Start areas. Changes in parenting, parent child relations and parent and child wellbeing are assessed with validated measures immediately and at 6 months post intervention. Economic components include cost consequences and cost utility analyses based on parental ranking of states of quality of life. Attendance and completion rates and fidelity to the FLNP course delivery are assessed. A nested qualitative study will assess reasons for participation and non-participation and the perceived value of the programme to families. By the end of May 2010, 287 families have been recruited into the trial across four areas of south Wales. Recruitment has not met the planned timescales with barriers including professional anxiety about families entering the control arm of the trial, family concern about video and audio recording, programme facilitator concern about the recording of FLNP sessions for fidelity purposes and delays due to the new UK research governance procedures. Discussion Whilst there are strong theoretical arguments to support universal provision of parenting programmes, few universal programmes have been subjected to randomised controlled trials. In this paper we describe a RCT protocol with quantitative and qualitative outcome measures and an economic evaluation designed to provide clear evidence with regard to effectiveness and costs. We describe challenges implementing the protocol and how we are addressing these

    Genome-wide association study meta-analysis identifies three novel loci for circulating anti-Müllerian hormone levels in women

    Get PDF
    STUDY QUESTION: Can additional genetic variants for circulating anti-Müllerian hormone (AMH) levels be identified through a genome-wide association study (GWAS) meta-analysis including a large sample of premenopausal women? SUMMARY ANSWER: We identified four loci associated with AMH levels at P < 5 × 10(−8): the previously reported MCM8 locus and three novel signals in or near AMH, TEX41 and CDCA7. WHAT IS KNOWN ALREADY: AMH is expressed by antral stage ovarian follicles in women, and variation in age-specific circulating AMH levels has been associated with disease outcomes. However, the physiological mechanisms underlying these AMH-disease associations are largely unknown. STUDY DESIGN, SIZE, DURATION: We performed a GWAS meta-analysis in which we combined summary statistics of a previous AMH GWAS with GWAS data from 3705 additional women from three different cohorts. PARTICIPANTS/MATERIALS, SETTING, METHODS: In total, we included data from 7049 premenopausal female participants of European ancestry. The median age of study participants ranged from 15.3 to 48 years across cohorts. Circulating AMH levels were measured in either serum or plasma samples using different ELISA assays. Study-specific analyses were adjusted for age at blood collection and population stratification, and summary statistics were meta-analysed using a standard error-weighted approach. Subsequently, we functionally annotated GWAS variants that reached genome-wide significance (P < 5 × 10(−8)). We also performed a gene-based GWAS, pathway analysis and linkage disequilibrium score regression and Mendelian randomization (MR) analyses. MAIN RESULTS AND THE ROLE OF CHANCE: We identified four loci associated with AMH levels at P < 5 × 10(−8): the previously reported MCM8 locus and three novel signals in or near AMH, TEX41 and CDCA7. The strongest signal was a missense variant in the AMH gene (rs10417628). Most prioritized genes at the other three identified loci were involved in cell cycle regulation. Genetic correlation analyses indicated a strong positive correlation among single nucleotide polymorphisms for AMH levels and for age at menopause (r(g) = 0.82, FDR = 0.003). Exploratory two-sample MR analyses did not support causal effects of AMH on breast cancer or polycystic ovary syndrome risk, but should be interpreted with caution as they may be underpowered and the validity of genetic instruments could not be extensively explored. LARGE SCALE DATA: The full AMH GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION: Whilst this study doubled the sample size of the most recent GWAS, the statistical power is still relatively low. As a result, we may still lack power to identify more genetic variants for AMH and to determine causal effects of AMH on, for example, breast cancer. Also, follow-up studies are needed to investigate whether the signal for the AMH gene is caused by reduced AMH detection by certain assays instead of actual lower circulating AMH levels. WIDER IMPLICATIONS OF THE FINDINGS: Genes mapped to the MCM8, TEX41 and CDCA7 loci are involved in the cell cycle and processes such as DNA replication and apoptosis. The mechanism underlying their associations with AMH may affect the size of the ovarian follicle pool. Altogether, our results provide more insight into the biology of AMH and, accordingly, the biological processes involved in ovarian ageing. STUDY FUNDING/COMPETING INTEREST(S): Nurses’ Health Study and Nurses’ Health Study II were supported by research grants from the National Institutes of Health (CA172726, CA186107, CA50385, CA87969, CA49449, CA67262, CA178949). The UK Medical Research Council and Wellcome (217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC. This publication is the work of the listed authors, who will serve as guarantors for the contents of this article. A comprehensive list of grants funding is available on the ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf). Funding for the collection of genotype and phenotype data used here was provided by the British Heart Foundation (SP/07/008/24066), Wellcome (WT092830M and WT08806) and UK Medical Research Council (G1001357). M.C.B., A.L.G.S. and D.A.L. work in a unit that is funded by the University of Bristol and UK Medical Research Council (MC_UU_00011/6). M.C.B.’s contribution to this work was funded by a UK Medical Research Council Skills Development Fellowship (MR/P014054/1) and D.A.L. is a National Institute of Health Research Senior Investigator (NF-0616-10102). A.L.G.S. was supported by the study of Dynamic longitudinal exposome trajectories in cardiovascular and metabolic non-communicable diseases (H2020-SC1-2019-Single-Stage-RTD, project ID 874739). The Doetinchem Cohort Study was financially supported by the Ministry of Health, Welfare and Sports of the Netherlands. The funder had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Ansh Labs performed the AMH measurements for the Doetinchem Cohort Study free of charge. Ansh Labs was not involved in the data analysis, interpretation or reporting, nor was it financially involved in any aspect of the study. R.M.G.V. was funded by the Honours Track of MSc Epidemiology, University Medical Center Utrecht with a grant from the Netherlands Organization for Scientific Research (NWO) (022.005.021). The Study of Women's Health Across the Nation (SWAN) has grant support from the National Institutes of Health (NIH), DHHS, through the National Institute on Aging (NIA), the National Institute of Nursing Research (NINR) and the NIH Office of Research on Women’s Health (ORWH) (U01NR004061; U01AG012505, U01AG012535, U01AG012531, U01AG012539, U01AG012546, U01AG012553, U01AG012554, U01AG012495). The SWAN Genomic Analyses and SWAN Legacy have grant support from the NIA (U01AG017719). The Generations Study was funded by Breast Cancer Now and the Institute of Cancer Research (ICR). The ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent official views of the funders. The Sister Study was funded by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Environmental Health Sciences (Z01-ES044005 to D.P.S.); the AMH assays were supported by the Avon Foundation (02-2012-065 to H.B. Nichols and D.P.S.). The breast cancer genome-wide association analyses were supported by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the ‘Ministère de l’Économie, de la Science et de l’Innovation du Québec’ through Genome Québec and grant PSR-SIIRI-701, The National Institutes of Health (U19 CA148065, X01HG007492), Cancer Research UK (C1287/A10118, C1287/A16563, C1287/A10710) and The European Union (HEALTH-F2-2009-223175 and H2020 633784 and 634935). All studies and funders are listed in Michailidou et al. (Nature, 2017). F.J.M.B. has received fees and grant support from Merck Serono and Ferring BV. D.A.L. has received financial support from several national and international government and charitable funders as well as from Medtronic Ltd and Roche Diagnostics for research that is unrelated to this study. N.S. is scientific consultant for Ansh Laboratories. The other authors declare no competing interests
    • …
    corecore