5 research outputs found

    Remembered saccades with variable delay in Parkinson's disease

    No full text
    The effect of increasing delay on the metrics of remembered saccades was studied in 10 subjects with mild Parkinson's disease, none of whom was receiving treatment with L‐dopa, and nine age‐matched control subjects. Delays of 1 msec, 250 msec, 1000 msec, 2500 msec, and 5000 msec were used, and reflexive saccades used as a control condition. Results were analyzed for the gain of the primary saccade and the accuracy of the final eye position (FEP gain). Reflexive saccades were normal in subjects with Parkinson's disease, but remembered saccades showed marked hypometria of primary saccade gain at all delays. FEP gain was unimpaired in Parkinson's disease, and primary saccade gain and FEP gain did not vary as a function of delay. Hypometria of primary saccades is compatible with dysfunction in striato‐collicular inhibitory pathways in Parkinson's disease, arising as a functional consequence of dopamine deficiency in the basal ganglia. Maintenance of an accurate FEP gain suggests no deficit in oculomotor spatial working memory in Parkinson's disease, at least at delays of up to 5 sec

    The role of working memory and attentional disengagement on inhibitory control:effects of aging and Alzheimer's disease

    No full text
    Patients with Alzheimer's disease have an impairment of inhibitory control for reasons that are currently unclear. Using an eye-tracking task (the gap-overlap paradigm), we examined whether the uncorrected errors relate to the task of attentional disengagement in preparation for action. Alternatively, the difficulty in correcting for errors may be caused by the working memory representation of the task. A major aim of this study was to distinguish between the effects of healthy aging and neurodegenerative disease on the voluntary control of saccadic eye movements. Using the antisaccade task (AST) and pro-saccade task (PST) with the 'gap' and 'overlap' procedures, we obtained detailed eye-tracking measures in patients, with 18 patients with probable Alzheimer's disease, 25 patients with Parkinson's disease and 17 healthy young and 18 old participants. Uncorrected errors in the AST were selectively increased in Alzheimer's disease, but not in Parkinson's disease compared to the control groups. These uncorrected errors were strongly correlated with spatial working memory. There was an increase in the saccade reaction times to targets that were presented simultaneously with the fixation stimulus, compared to the removal of fixation. This 'gap' effect (i.e. overlap-gap) saccade reaction time was elevated in the older groups compared to young group, which yielded a strong effect of aging and no specific effect of neurodegenerative disease. Healthy aging, rather than neurodegenerative disease, accounted for the increase in the saccade reaction times to the target that are presented simultaneously with a fixation stimulus. These results suggest that the impairment of inhibitory control in the AST may provide a convenient and putative mark of working memory dysfunction in Alzheimer's disease
    corecore