92 research outputs found

    Structure and dynamics of monolayers on planar and cluster surfaces

    Get PDF
    Organized molecular assemblies have been one of the intensely pursued areas of contemporary chemistry. Among the various methodologies used to make organized monolayer structures, self-assembled monolayers (SAMs) have been attractive to many materials chemists owing to the simplicity of the preparative method and high stability. Advances in various techniques and their application in the study of SAMs have significantly improved our understanding of these molecular systems. These studies have been further intensified since the successful preparation of stable metal clusters protected with monolayers. This article reviews the structure, temperature-induced phase transitions, and associated dynamics of monolayers, principally in the context of our own work in this area. Alkanethiols on Au(111) and Ag(111) are taken as archetypal systems to discuss the properties of 2D SAMs; studies from our laboratory have been on evaporated thin films. Alkanethiols on Au and Ag cluster surfaces are taken as examples of 3D SAMs. Although our principal focus will be on alkanethiols, we will touch upon a few other adsorbate systems as well

    An investigation of the structure and properties of layered copper thiolates

    Get PDF
    Copper(I) n-alkane thiolate systems have been characterized using powder X-ray diffraction, IR spectroscopy, X-ray photoelectron spectroscopy and thermal analyses. The diffraction pattern is composed of a series of peaks, which are indexed to (0k0) reflections of a layered structure. The tilt angle, θ, of the alkyl chains is estimated to be 13°, distinctly different from the silver thiolates, where the chains are near normal to the silver plane. The layers interpenetrate to a small (or negligible) extent. The alkyl chain assembly is different from that of crystalline alkanes. An increase in the alkyl chain order with increase in chain length is evident in the infrared spectra. The chains are essentially all-trans, but gauche conformations are seen near the sulfur end. Upon cooling, an orientational transition occurs resulting in the freezing of the local symmetry around the methyl group. The materials show high thermal stability and desorption is seen only above 500 K. High temperature phase transitions of the materials have been studied by variable temperature powder XRD, variable temperature IR and differential scanning calorimetry. Two distinct transitions; one from an original gauche-trans (g-t) to a gauche (g) phase and another subsequent one, to a columnar mesophase, have been identified. The transitions are not fully reversible, conformational changes are observed upon heating and cooling. Thiolates appear to be model systems for the investigation of molecular self-assembly on copper surfaces

    2-Mercaptobenzothiazole protected Au and Ag clusters

    Get PDF
    Nanometer sized gold and silver clusters protected with 2-mercaptobenzothiazole monolayers have been prepared and characterized by various spectroscopic methods. Optical absorption spectra show features assigned to charge-transfer excitation between the monolayer and the cluster, in addition to a red shifting and reduction of plasmon absorption. The monolayers on clusters are compared with the corresponding 2Dmonolayers investigated previously. The dominant adsorbate geometries on these clusters are different. Whereas the temperature dependent dynamics are minimal for 2D-SAMs, they are significant for monolayers on 3D surfaces, which is attributed to the decreased packing density on the cluster surfaces. The thermal stability of these monolayers is high and comparable to that of alkanethiolate monolayers. The monolayers undergo irreversible structural changes upon heating, which have been studied by differential scanning calorimetry and IR spectroscopy

    Oxidation of alkanethiol monolayers on gold cluster surfaces

    Get PDF
    Reaction of ozone with alkanethiol monolayers on gold cluster surfaces is reported. Ozone diffuses through the monolayer and reacts with the head group forming oxidized sulfur on the cluster surface, increasing disorder in the monolayer assembly. During the reaction conducted in toluene, some of the thiols undergo desorption from the surface resulting in increased inter-cluster interaction leading to aggregation and consequent precipitation of the clusters

    Formation of a nickel hydroxide monolayer on Au through a self-assembled monolayer of 5,5'-dithiobis(2-nitrobenzoic acid): voltammetric, SERS and XPS investigations of the modified electrodes

    Get PDF
    The formation of self-assembled monolayers (SAM) of 5,5'-dithiobis (2-nitrobenzoic acid), DNBA on gold has enabled further derivatization of the electrode surface with functional moieties anchored to the surface bound molecules. A SAM of DNBA was formed on the Au surface. Nickel ions tethered to the SAM-covered Au surface, were subsequently derivatized electrochemically to yield nickel hydroxide overlayers, thereby showing the possibility of preparing ultra-thin films of metal oxides through solution chemistry. The nickel hydroxide surface coverage obtained on bare and SAM-covered electrodes was estimated from voltammetric peaks and it varied from one monolayer to about 300 monolayers. The formation of a monolayer of nickel hydroxide has been achieved for the first time by electrochemical modification. Further, the modified electrodes were subjected to SERS and XPS studies to understand their surface characteristics. Modified electrodes provide a catalytic pathway involving nickel hydroxide for the electro-oxidation of glucose in alkaline solutions

    Aniline incorporated silica nanobubbles

    Get PDF
    We report the synthesis of stearate functionalized nanobubbles of SiO2 with a few aniline molecules inside, represented as C6H5NH2@SiO2@stearate, exhibiting fluorescence with red-shifted emission. Stearic acid functionalization allows the materials to be handled just as free molecules, for dissolution, precipitation, storage etc. The methodology adopted involves adsorption of aniline on the surface of gold nanoparticles with subsequent growth of a silica shell through monolayers, followed by the selective removal of the metal core either using sodium cyanide or by a new reaction involving halocarbons. The material is stable and can be stored for extended periods without loss of fluorescence. Spectroscopic and voltammetric properties of the system were studied in order to understand the interaction of aniline with the shell as well as the monolayer, whilst transmission electron microscopy has been used to study the silica shell

    Micropropagation and conservation of selected endangered anticancer medicinal plants from the Western Ghats of India

    Get PDF
    Globally, cancer is a constant battle which severely affects the human population. The major limitations of the anticancer drugs are the deleterious side effects on the quality of life. Plants play a vital role in curing many diseases with minimal or no side effects. Phytocompounds derived from various medicinal plants serve as the best source of drugs to treat cancer. The global demand for phytomedicines is mostly reached by the medicinal herbs from the tropical nations of the world even though many plant species are threatened with extinction. India is one of the mega diverse countries of the world due to its ecological habitats, latitudinal variation, and diverse climatic range. Western Ghats of India is one of the most important depositories of endemic herbs. It is found along the stretch of south western part of India and constitutes rain forest with more than 4000 diverse medicinal plant species. In recent times, many of these therapeutically valued herbs have become endangered and are being included under the red-listed plant category in this region. Due to a sharp rise in the demand for plant-based products, this rich collection is diminishing at an alarming rate that eventually triggered dangerous to biodiversity. Thus, conservation of the endangered medicinal plants has become a matter of importance. The conservation by using only in situ approaches may not be sufficient enough to safeguard such a huge bio-resource of endangered medicinal plants. Hence, the use of biotechnological methods would be vital to complement the ex vitro protection programs and help to reestablish endangered plant species. In this backdrop, the key tools of biotechnology that could assist plant conservation were developed in terms of in vitro regeneration, seed banking, DNA storage, pollen storage, germplasm storage, gene bank (field gene banking), tissue bank, and cryopreservation. In this chapter, an attempt has been made to critically review major endangered medicinal plants that possess anticancer compounds and their conservation aspects by integrating various biotechnological tool
    corecore