4 research outputs found

    The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    Get PDF
    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users.The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model

    Using Image and Curve Registration for Measuring the Goodness of Fit of Spatial and Temporal Predictions

    No full text
    Conventional measures of model fit for indexed data (e.g., time series or spatial data) summarize errors in y, for instance by integrating (or summing) the squared difference between predicted and measured values over a range of x. Wepropose an approach which recognizes that errors can occur in the x-direction as well. Instead of just measuring the difference between the predictions and observations at each site (or time), we first “deform ” the predictions, stretching or compressing along the x-direction or directions, so as to improve the agreement between the observations and the deformed predictions. Error is then summarized by (a) the amount of deformation in x, and (b) the remaining difference in y between the data and the deformed predictions (i.e., the residual error in y after the deformation). A parameter, λ, controls the tradeoff between (a) and (b), so that as λ →∞no deformation is allowed, whereas for λ =0the deformation minimizes the errors in y.Insome applications, the deformation itself is of interest because it characterizes the (temporal or spatial) structure of the errors. The optimal deformation can be computed by solving a system of nonlinear partial differential equations, or, for a unidimensional index, by using a dynamic programming algorithm. We illustrate the procedure with examples from nonlinear time series and fluid dynamics

    The national earth system prediction capability: coordinating the giant

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1175/BAMS-D-16-0002.1A five-agency strategy to coordinate and accelerate the national numerical environmental prediction capability is discussed

    Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus

    No full text
    Neanderthals disappeared sometime between 30,000 and 24,000 years ago. Until recently, Neanderthals were understood to have been predominantly meat-eaters; however, a growing body of evidence suggests their diet also included plants. We present the results of a study, in which sequential thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) were combined with morphological analysis of plant microfossils, to identify material entrapped in dental calculus from five Neanderthal individuals from the north Spanish site of El SidrĂłn. Our results provide the first molecular evidence for inhalation of wood-fire smoke and bitumen or oil shale and ingestion of a range of cooked plant foods. We also offer the first evidence for the use of medicinal plants by a Neanderthal individual. The varied use of plants that we have identified suggests that the Neanderthal occupants of El SidrĂłn had a sophisticated knowledge of their natural surroundings which included the ability to select and use certain plants
    corecore