845 research outputs found

    Continuous-variable quantum teleportation of entanglement

    Full text link
    Entangled coherent states can be used to determine the entanglement fidelity for a device that is designed to teleport coherent states. This entanglement fidelity is universal, in that the calculation is independent of the use of entangled coherent states and applies generally to the teleportation of entanglement using coherent states. The average fidelity is shown to be a poor indicator of the capability of teleporting entanglement; i.e., very high average fidelity for the quantum teleportation apparatus can still result in low entanglement fidelity for one mode of the two-mode entangled coherent state.Comment: 5 pages, 1 figure, published versio

    Gaussian quantum computation with oracle-decision problems

    Full text link
    We study a simple-harmonic-oscillator quantum computer solving oracle decision problems. We show that such computers can perform better by using nonorthogonal Gaussian wave functions rather than orthogonal top-hat wave functions as input to the information encoding process. Using the Deutsch-Jozsa problem as an example, we demonstrate that Gaussian modulation with optimized width parameter results in a lower error rate than for the top-hat encoding. We conclude that Gaussian modulation can allow for an improved trade-off between encoding, processing and measurement of the information.Comment: RevTeX4, 10 pages with 4 figure

    Theory of coherent acoustic phonons in InGaN/GaN multi-quantum wells

    Full text link
    A microscopic theory for the generation and propagation of coherent LA phonons in pseudomorphically strained wurzite (0001) InGaN/GaN multi-quantum well (MQW) p-i-n diodes is presented. The generation of coherent LA phonons is driven by photoexcitation of electron-hole pairs by an ultrafast Gaussian pump laser and is treated theoretically using the density matrix formalism. We use realistic wurzite bandstructures taking valence-band mixing and strain-induced piezo- electric fields into account. In addition, the many-body Coulomb ineraction is treated in the screened time-dependent Hartree-Fock approximation. We find that under typical experimental conditions, our microscopic theory can be simplified and mapped onto a loaded string problem which can be easily solved.Comment: 20 pages, 17 figure

    Quantum teleportation of entangled coherent states

    Get PDF
    We propose a simple scheme for the quantum teleportation of both bipartite and multipartite entangled coherent states with the successful probability 1/2. The scheme is based on only linear optical devices such as beam splitters and phase shifters, and two-mode photon number measurements. The quantum channels described by multipartite maximally entangled coherent states are readily made by the beam splitters and phase shifters.Comment: 4 pages, no figure

    Longitudinal development of initial, chronic and mucoid Pseudomonas aeruginosa infection in young children with cystic fibrosis

    Get PDF
    BACKGROUND: While the emergence of chronic and mucoid Pseudomonas aeruginosa (Pa) infection are both associated with poorer outcomes among CF patients, their relationship is poorly understood. We examined the longitudinal relationship of incident, chronic and mucoid Pa in a contemporary, young CF cohort in the current era of Pa eradication therapy. METHODS: This retrospective cohort was comprised of patients in the U.S. CF Foundation Patient Registry born 2006-2015, diagnosed before age 2, and with at least 3 respiratory cultures annually. Incidence and age-specific prevalence of Pa infection stages (initial and chronic [≥ 3Pa+cultures in prior year]) and of mucoid Pa were summarized. Transition times and the interaction between Pa stage and acquisition of mucoid Pa were examined via Cox models. RESULTS: Among the 5592 CF patients in the cohort followed to a mean age of 5.5years, 64% (n=3580) acquired Pa. Of those, 13% (n=455) developed chronic Pa and 17% (n=594) cultured mucoid Pa. Among those with mucoid Pa, 36% (211/594) had it on their first recorded Pa+culture, while mucoid Pa emerged at or after entering the chronic stage in 12% (73/594). Mucoidy was associated with significantly increased risk of transition to chronic Pa infection (HR=2.59, 95% CI 2.11, 3.19). CONCLUSIONS: Two-thirds of early-diagnosed young children with CF acquired Pa during a median 5.6years of follow up, among whom 13% developed chronic Pa and 17% acquired mucoid Pa. Contrary to our hypothesis, 87% of young children who developed mucoid Pa did so before becoming chronically infected

    A solution for galactic disks with Yukawian gravitational potential

    Get PDF
    We present a new solution for the rotation curves of galactic disks with gravitational potential of the Yukawa type. We follow the technique employed by Toomre in 1963 in the study of galactic disks in the Newtonian theory. This new solution allows an easy comparison between the Newtonian solution and the Yukawian one. Therefore, constraints on the parameters of theories of gravitation can be imposed, which in the weak field limit reduce to Yukawian potentials. We then apply our formulae to the study of rotation curves for a zero-thickness exponential disk and compare it with the Newtonian case studied by Freeman in 1970. As an application of the mathematical tool developed here, we show that in any theory of gravity with a massive graviton (this means a gravitational potential of the Yukawa type), a strong limit can be imposed on the mass (m_g) of this particle. For example, in order to obtain a galactic disk with a scale length of b ~ 10 kpc, we should have a massive graviton of m_g << 10^{-59} g. This result is much more restrictive than those inferred from solar system observations.Comment: 7 pages; 1 eps figure; to appear in General Relativity and Gravitatio

    Homodyne Bell's inequalities for entangled mesoscopic superpositions

    Full text link
    We present a scheme for demonstrating violation of Bell's inequalities using a spin-1/2 system entangled with a pair of classically distinguishable wave packets in a harmonic potential. In the optical domain, such wave packets can be represented by coherent states of a single light mode. The proposed scheme involves standard spin-1/2 projections and measurements of the position and the momentum of the harmonic oscillator system, which for a light mode can be realized by means of homodyne detection. We discuss effects of imperfections, including non-unit efficiency of the homodyne detector, and point out a close link between the visibility of interference and violation of Bell's inequalities in the described scheme.Comment: 6 pages, 3 figures. Extended version, journal reference adde

    Entanglement in bipartite generalized coherent states

    Full text link
    Entanglement in a class of bipartite generalized coherent states is discussed. It is shown that a positive parameter can be associated with the bipartite generalized coherent states so that the states with equal value for the parameter are of equal entanglement. It is shown that the maximum possible entanglement of 1 bit is attained if the positive parameter equals 2\sqrt{2}. The result that the entanglement is one bit when the relative phase between the composing states is π\pi in bipartite coherent states is shown to be true for the class of bipartite generalized coherent states considered.Comment: 10 pages, 4 figures; typos corrected and figures redrawn for better clarit
    corecore