24,571 research outputs found

    Subpicosecond (320 fs) pulses from CW passively mode-locked external cavity two-section multiquantum well lasers

    Get PDF
    Pulses from a passively mode-locked two-section multi-quantum well laser coupled to an external cavity are compressed to subpicosecond pulse widths using an external grating telescope compressor. A minimum deconvolved pulse width of 0.32 ps is measured, close to the transform limit, with peak powers of 1.9 W

    Memetic Multilevel Hypergraph Partitioning

    Full text link
    Hypergraph partitioning has a wide range of important applications such as VLSI design or scientific computing. With focus on solution quality, we develop the first multilevel memetic algorithm to tackle the problem. Key components of our contribution are new effective multilevel recombination and mutation operations that provide a large amount of diversity. We perform a wide range of experiments on a benchmark set containing instances from application areas such VLSI, SAT solving, social networks, and scientific computing. Compared to the state-of-the-art hypergraph partitioning tools hMetis, PaToH, and KaHyPar, our new algorithm computes the best result on almost all instances

    ‘It’s better than daytime television’: questioning the socio-spatial impacts of massage parlours on residential communities

    Get PDF
    It has been shown that street sex work is problematic for some communities, but there is less evidence of the effects of brothels. Emerging research also suggests that impact discourses outlined by residential communities and in regulatory policies should be critiqued, because they are often based on minority community voices, and limited tangible evidence is used to masquerade wider moral viewpoints about the place of sex work. Using a study of residents living in close proximity to brothels in Blackpool, this paper argues that impact is socially and spatially fluid. Impact needs to be evaluated in a more nuanced manner, which is considerate of the heterogeneity of (even one type of) sex work, and the community in question. Brothels in Blackpool had a variety of roles in the everyday socio-spatial fabric; thus also questioning the common assumption that sex work only impacts negatively on residential communities

    Investigating the cores of fossil systems with Chandra

    Full text link
    We investigate the cores of fossil galaxy groups and clusters (`fossil systems') using archival Chandra data for a sample of 17 fossil systems. We determined the cool-core fraction for fossils via three observable diagnostics, the central cooling time, cuspiness, and concentration parameter. We quantified the dynamical state of the fossils by the X-ray peak/brightest cluster galaxy (BCG), and the X-ray peak/emission weighted centre separations. We studied the X-ray emission coincident with the BCG to detect the presence of potential thermal coronae. A deprojection analysis was performed for z < 0.05 fossils to obtain cooling time and entropy profiles, and to resolve subtle temperature structures. We investigated the Lx-T relation for fossils from the 400d catalogue to see if the scaling relation deviates from that of other groups. Most fossils are identified as cool-core objects via at least two cool-core diagnostics. All fossils have their dominant elliptical galaxy within 50 kpc of the X-ray peak, and most also have the emission weighted centre within that distance. We do not see clear indications of a X-ray corona associated with the BCG unlike that has been observed for some other objects. Fossils do not have universal temperature profiles, with some low-temperature objects lacking features that are expected for ostensibly relaxed objects with a cool-core. The entropy profiles of the z < 0.05 fossil systems can be well-described by a power law model, albeit with indices smaller than 1. The 400d fossils Lx-T relation shows indications of an elevated normalisation with respect to other groups, which seems to persist even after factoring in selection effects.Comment: Accepted for publication in Astronomy and Astrophysic

    The ground-state of General Relativity, Topological Theories and Dark Matter

    Full text link
    We suggest a limit of Einstein equations incorporating the state gμν=0g_{\mu\nu}=0 as a solution. The large scale behavior of this theory has interesting properties. For a spherical source, the velocity profile for circular motions is of the form observed in galaxies (approximately flat). For FRW cosmologies, the Friedman equation contains an additional contribution in the matter sector.Comment: More clarifications on the interpretation of the limits. Shorter version. 4 pages, two column, no figure

    Galactic metric, dark radiation, dark pressure and gravitational lensing in brane world models

    Full text link
    In the braneworld scenario, the four dimensional effective Einstein equation has extra terms which arise from the embedding of the 3-brane in the bulk. These non-local effects, generated by the free gravitational field of the bulk, may provide an explanation for the dynamics of the neutral hydrogen clouds at large distances from the galactic center, which is usually explained by postulating the existence of the dark matter. We obtain the exact galactic metric, the dark radiation and the dark pressure in the flat rotation curves region in the brane world scenario. Due to the presence of the bulk effects, the flat rotation curves could extend several hundred kpc. The limiting radius for which bulk effects are important is estimated and compared with the numerical values of the truncation parameter of the dark matter halos, obtained from weak lensing observations. There is a relatively good agreement between the predictions of the model and observations. The deflection of photons is also considered and the bending angle of light is computed. The bending angle predicted by the brane world models is much larger than that predicted by standard general relativistic and dark matter models. The angular radii of the Einstein rings are obtained in the small angles approximation. The predictions of the brane world model for the tangential shear are compared with the observational data obtained in the weak lensing of galaxies in the Red-Sequence Cluster Survey. Therefore the study of the light deflection by galaxies and the gravitational lensing could discriminate between the different dynamical laws proposed to model the motion of particles at the galactic level and the standard dark matter models.Comment: 33 pages, 3 figures, accepted for publication in Ap

    Engineering adiabaticity at an avoided crossing with optimal control

    Full text link
    We investigate ways to optimize adiabaticity and diabaticity in the Landau-Zener model with non-uniform sweeps. We show how diabaticity can be engineered with a pulse consisting of a linear sweep augmented by an oscillating term. We show that the oscillation leads to jumps in populations whose value can be accurately modeled using a model of multiple, photon-assisted Landau-Zener transitions, which generalizes work by Wubs et al. [New J. Phys. 7, 218 (2005)]. We extend the study on diabaticity using methods derived from optimal control. We also show how to preserve adiabaticity with optimal pulses at limited time, finding a non-uniform quantum speed limit

    The virial theorem and the dynamics of clusters of galaxies in the brane world models

    Full text link
    A version of the virial theorem, which takes into account the effects of the non-compact extra-dimensions, is derived in the framework of the brane world models. In the braneworld scenario, the four dimensional effective Einstein equation has some extra terms, called dark radiation and dark pressure, respectively, which arise from the embedding of the 3-brane in the bulk. To derive the generalized virial theorem we use a method based on the collisionless Boltzmann equation. The dark radiation term generates an equivalent mass term (the dark mass), which gives an effective contribution to the gravitational energy. This term may account for the well-known virial theorem mass discrepancy in actual clusters of galaxies. An approximate solution of the vacuum field equations on the brane, corresponding to weak gravitational fields, is also obtained, and the expressions for the dark radiation and dark mass are derived. The qualitative behavior of the dark mass is similar to that of the observed virial mass in clusters of galaxies. We compare our model with the observational data for galaxy clusters, and we express all the physical parameters of the model in terms of observable quantities. In particular, we predict that the dark mass must extend far beyond the presently considered virial radius. The behavior of the galaxy cluster velocity dispersion in brane world models is also considered. Therefore the study of the matter distribution and velocity dispersion at the extragalactic scales could provide an efficient method for testing the multi-dimensional physical models.Comment: 29 pages, no figures, accepted for publication in PR

    Molecular gas in nearby low-luminosity QSO host galaxies

    Full text link
    This paper addresses the global molecular gas properties of a representative sample of galaxies hosting low-luminosity quasistellar objects. An abundant supply of gas is necessary to fuel both the active galactic nucleus and any circum-nuclear starburst activity of QSOs. We selected a sample of nearby low-luminosity QSO host galaxies that is free of infrared excess biases. All objects are drawn from the Hamburg-ESO survey for bright UV-excess QSOs, have DEC>-30 degrees and redshifts that do not exceed z=0.06. The IRAM 30m telescope was used to measure the CO(1-0) and CO(2-1) transition in parallel. 27 out of 39 galaxies in the sample have been detected. The molecular gas masses of the detected sources range from 0.4E9 M_sun to 9.7E9 M_sun. We can confirm that the majority of galaxies hosting low-luminosity QSOs are rich in molecular gas. The properties of galaxies hosting brighter type I AGN and circumnuclear starformation regions differ from the properties of galaxies with fainter central regions. The overall supply of molecular gas and the spread of the line width distribution is larger. When comparing the far-infrared with the CO luminosities, the distribution can be separated into two different power-laws: one describing the lower activity Seyfert I population and the second describing the luminous QSO population. The separation in the L_FIR/L'_CO behavior may be explainable with differing degrees of compactness of the emission regions. We provide a simple model to describe the two power-laws. The sample studied in this paper is located in a transition region between the two populations
    • …
    corecore