24,823 research outputs found
Fine structure of distributions and central limit theorem in diffusive billiards
We investigate deterministic diffusion in periodic billiard models, in terms
of the convergence of rescaled distributions to the limiting normal
distribution required by the central limit theorem; this is stronger than the
usual requirement that the mean square displacement grow asymptotically
linearly in time. The main model studied is a chaotic Lorentz gas where the
central limit theorem has been rigorously proved. We study one-dimensional
position and displacement densities describing the time evolution of
statistical ensembles in a channel geometry, using a more refined method than
histograms. We find a pronounced oscillatory fine structure, and show that this
has its origin in the geometry of the billiard domain. This fine structure
prevents the rescaled densities from converging pointwise to gaussian
densities; however, demodulating them by the fine structure gives new densities
which seem to converge uniformly. We give an analytical estimate of the rate of
convergence of the original distributions to the limiting normal distribution,
based on the analysis of the fine structure, which agrees well with simulation
results. We show that using a Maxwellian (gaussian) distribution of velocities
in place of unit speed velocities does not affect the growth of the mean square
displacement, but changes the limiting shape of the distributions to a
non-gaussian one. Using the same methods, we give numerical evidence that a
non-chaotic polygonal channel model also obeys the central limit theorem, but
with a slower convergence rate.Comment: 16 pages, 19 figures. Accepted for publication in Physical Review E.
Some higher quality figures at http://www.maths.warwick.ac.uk/~dsander
A Bulk-Parallel Priority Queue in External Memory with STXXL
We propose the design and an implementation of a bulk-parallel external
memory priority queue to take advantage of both shared-memory parallelism and
high external memory transfer speeds to parallel disks. To achieve higher
performance by decoupling item insertions and extractions, we offer two
parallelization interfaces: one using "bulk" sequences, the other by defining
"limit" items. In the design, we discuss how to parallelize insertions using
multiple heaps, and how to calculate a dynamic prediction sequence to prefetch
blocks and apply parallel multiway merge for extraction. Our experimental
results show that in the selected benchmarks the priority queue reaches 75% of
the full parallel I/O bandwidth of rotational disks and and 65% of SSDs, or the
speed of sorting in external memory when bounded by computation.Comment: extended version of SEA'15 conference pape
Chaos in cylindrical stadium billiards via a generic nonlinear mechanism
We describe conditions under which higher-dimensional billiard models in
bounded, convex regions are fully chaotic, generalizing the Bunimovich stadium
to dimensions above two. An example is a three-dimensional stadium bounded by a
cylinder and several planes; the combination of these elements may give rise to
defocusing, allowing large chaotic regions in phase space. By studying families
of marginally-stable periodic orbits that populate the residual part of phase
space, we identify conditions under which a nonlinear instability mechanism
arises in their vicinity. For particular geometries, this mechanism rather
induces stable nonlinear oscillations, including in the form of
whispering-gallery modes.Comment: 4 pages, 4 figure
Multiphoton Coincidence Spectroscopy
We extend the analysis of photon coincidence spectroscopy beyond bichromatic
excitation and two-photon coincidence detection to include multichromatic
excitation and multiphoton coincidence detection. Trichromatic excitation and
three-photon coincidence spectroscopy are studied in detail, and we identify an
observable signature of a triple resonance in an atom-cavity system.Comment: 6 page, REVTeXs, 6 Postscript figures. The abstract appeared in the
Proceedings of ACOLS9
Prescribable mHealth apps identified from an overview of systematic reviews
AbstractMobile health apps aimed towards patients are an emerging field of mHealth. Their potential for improving self-management of chronic conditions is significant. Here, we propose a concept of “prescribable” mHealth apps, defined as apps that are currently available, proven effective, and preferably stand-alone, i.e., that do not require dedicated central servers and continuous monitoring by medical professionals. Our objectives were to conduct an overview of systematic reviews to identify such apps, assess the evidence of their effectiveness, and to determine the gaps and limitations in mHealth app research. We searched four databases from 2008 onwards and the Journal of Medical Internet Research for systematic reviews of randomized controlled trials (RCTs) of stand-alone health apps. We identified 6 systematic reviews including 23 RCTs evaluating 22 available apps that mostly addressed diabetes, mental health and obesity. Most trials were pilots with small sample size and of short duration. Risk of bias of the included reviews and trials was high. Eleven of the 23 trials showed a meaningful effect on health or surrogate outcomes attributable to apps. In conclusion, we identified only a small number of currently available stand-alone apps that have been evaluated in RCTs. The overall low quality of the evidence of effectiveness greatly limits the prescribability of health apps. mHealth apps need to be evaluated by more robust RCTs that report between-group differences before becoming prescribable. Systematic reviews should incorporate sensitivity analysis of trials with high risk of bias to better summarize the evidence, and should adhere to the relevant reporting guideline.</jats:p
Radiation-induced nucleic acid synthesis in L cells under energy deprivation
Radiation induced nucleic acid synthesis in energy deprived L cell
Linear work generation of R-MAT graphs
R-MAT (for Recursive MATrix) is a simple, widely used model for generating graphs with a power law degree distribution, a small diameter, and communitys structure. It is particularly attractive for generating very large graphs because edges can be generated independently by an arbitrary number of processors. However, current R-MAT generators need time logarithmic in the number of nodes for generating an edge— constant time for generating one bit at a time for node IDs of the connected nodes. We achieve constant time per edge by precomputing pieces of node IDs of logarithmic length. Using an alias table data structure, these pieces can then be sampled in constant time. This simple technique leads to practical improvements by an order of magnitude. This further pushes the limits of attainable graph size and makes generation overhead negligible in most situations
Cosmic X-ray physics
The soft X-ray sky survey data are combined with the results from the UXT sounding rocket payload. Very strong constraints can then be placed on models of the origin of the soft diffuse background. Additional observational constraints force more complicated and realistic models. Significant progress was made in the extraction of more detailed spectral information from the UXT data set. Work was begun on a second generation proportional counter response model. The first flight of the sounding rocket will have a collimator to study the diffuse background
Cosmic X-ray physics
The analysis of the beryllium-filtered data from Flight 17.020 was completed. The data base provided by the Wisconsin diffuse X-ray sky survey is being analyzed by correlating the B and C band emission with individual velocity components of neutral hydrogen. Work on a solid state detector to be used in high resolution spectroscopy of diffuse or extend X-ray sources is continuing. A series of 21 cm observations was completed. A paper on the effects of process parameter variation on the reflectivity of sputter-deposited tungsten-carvon multilayers was published
Metastability in Markov processes
We present a formalism to describe slowly decaying systems in the context of
finite Markov chains obeying detailed balance. We show that phase space can be
partitioned into approximately decoupled regions, in which one may introduce
restricted Markov chains which are close to the original process but do not
leave these regions. Within this context, we identify the conditions under
which the decaying system can be considered to be in a metastable state.
Furthermore, we show that such metastable states can be described in
thermodynamic terms and define their free energy. This is accomplished showing
that the probability distribution describing the metastable state is indeed
proportional to the equilibrium distribution, as is commonly assumed. We test
the formalism numerically in the case of the two-dimensional kinetic Ising
model, using the Wang--Landau algorithm to show this proportionality
explicitly, and confirm that the proportionality constant is as derived in the
theory. Finally, we extend the formalism to situations in which a system can
have several metastable states.Comment: 30 pages, 5 figures; version with one higher quality figure available
at http://www.fis.unam.mx/~dsanders
- …