2,402 research outputs found

    Kinematic analysis of conically scanned environmental properties

    Get PDF
    A method for determining the velocity of features such as wind. The method preferably includes producing sensor signals and projecting the sensor signals sequentially along lines lying on the surface of a cone. The sensor signals may be in the form of lidar, radar or sonar for example. As the sensor signals are transmitted, the signals contact objects and are backscattered. The backscattered sensor signals are received to determine the location of objects as they pass through the transmission path. The speed and direction the object is moving may be calculated using the backscattered data. The data may be plotted in a two dimensional array with a scan angle on one axis and a scan time on the other axis. The prominent curves that appear in the plot may be analyzed to determine the speed and direction the object is traveling

    Dangling-bond charge qubit on a silicon surface

    Full text link
    Two closely spaced dangling bonds positioned on a silicon surface and sharing an excess electron are revealed to be a strong candidate for a charge qubit. Based on our study of the coherent dynamics of this qubit, its extremely high tunneling rate ~ 10^14 1/s greatly exceeds the expected decoherence rates for a silicon-based system, thereby overcoming a critical obstacle of charge qubit quantum computing. We investigate possible configurations of dangling bond qubits for quantum computing devices. A first-order analysis of coherent dynamics of dangling bonds shows promise in this respect.Comment: 17 pages, 3 EPS figures, 1 tabl

    Optical/Near-Infrared Imaging of Infrared-Excess Palomar-Green QSOs

    Get PDF
    Ground-based high spatial-resolution (FWHM < 0.3-0.8") optical and near-infrared imaging (0.4-2.2um) is presented for a complete sample of optically selected Palomar-Green QSOs with far-infrared excesses at least as great as those of "warm" AGN-like ultraluminous infrared galaxies (L_ir/L_big-blue-bump > 0.46). In all cases, the host galaxies of the QSOs were detected and most have discernable two-dimensional structure. The QSO host galaxies and the QSO nuclei are similar in magnitude at H-band. H-band luminosities of the hosts range from 0.5-7.5 L* with a mean of 2.3 L*, and are consistent with those found in ULIGs. Both the QSO nuclei and the host galaxies have near-infrared excesses, which may be the result of dust associated with the nucleus and of recent dusty star formation in the host. These results suggest that some, but not all, optically-selected QSOs may have evolved from an infrared-active state triggered by the merger of two similarly-sized L* galaxies, in a manner similar to that of the ultraluminous infrared galaxies.Comment: Aastex format, 38 pages, 4 tables, 10 figures. Higher quality figures are available in JPG forma

    Imaging of Ultraluminous Infrared Galaxies in the Near-UV

    Get PDF
    We present the first ground-based U' (3410 angstroms) images of Ultraluminous Infrared Galaxies (ULIGs). Strong U' emission (median total M_U' = -20.8) is seen in all systems and in some cases the extended tidal features (both the smooth stellar distribution and compact star-forming features) contribute up to 60-80% of the total flux. The star-forming regions in both samples are found to have ages based on spectral synthesis models in the range 10-100 Myrs, and most differences in color between them can be attributed to the effects of dust reddening. Additionally, it is found that star-formation in compact knots in the tidal tails is most prominent in those ULIGs which have double nuclei, suggesting that the star-formation rate in the tails peaks prior to the actual coalescence of the galaxy nuclei and diminishes quickly thereafter. Similar to results at other wavelengths, the observed star formation at U' can only account for a small fraction of the known bolometric luminosity of the ULIGs. Azimuthally averaged radial light profiles at U' are characterized by a sersic law with index n=2, which is intermediate between an exponential disk and an r^(-1/4) law and closely resembles the latter at large radii. The implications of this near-ultraviolet imaging for optical/near-infrared observations of high redshift counterparts of ULIGs are discussed.Comment: 30 pages, 4 tables, and 9 figures, 2 of which are JPEGs. To appear in the August, 2000 edition of the Astronomical Journa

    Variable star classification across the Galactic bulge and disc with the VISTA Variables in the Vía Láctea survey

    Get PDF
    © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stab3116We present VIVACE, the VIrac VAriable Classification Ensemble, a catalogue of variable stars extracted from an automated classification pipeline for the Vista Variables in the V\'ia L\'actea (VVV) infrared survey of the Galactic bar/bulge and southern disc. Our procedure utilises a two-stage hierarchical classifier to first isolate likely variable sources using simple variability summary statistics and training sets of non-variable sources from the Gaia early third data release, and then classify candidate variables using more detailed light curve statistics and training labels primarily from OGLE and VSX. The methodology is applied to point-spread-function photometry for ∼490\sim490 million light curves from the VIRAC v2 astrometric and photometric catalogue resulting in a catalogue of ∼1.4\sim1.4 million likely variable stars, of which ∼39,000\sim39,000 are high-confidence (classification probability >0.9>0.9) RR Lyrae ab stars, ∼8000\sim8000 RR Lyrae c/d stars, ∼187,000\sim187,000 detached/semi-detached eclipsing binaries, ∼18,000\sim18,000 contact eclipsing binaries, ∼1400\sim1400 classical Cepheid variables and ∼2200\sim2200 Type II Cepheid variables. Comparison with OGLE-4 suggests a completeness of around 90 %90\,\% for RRab and ≲60%\lesssim60\% for RRc/d, and a misclassification rate for known RR Lyrae stars of around 1%1\% for the high confidence sample. We close with two science demonstrations of our new VIVACE catalogue: first, a brief investigation of the spatial and kinematic properties of the RR Lyrae stars within the disc/bulge, demonstrating the spatial elongation of bar-bulge RR Lyrae stars is in the same sense as the more metal-rich red giant population whilst having a slower rotation rate of ∼40 km s−1kpc−1\sim40\,\mathrm{km\,s}^{-1}\mathrm{kpc}^{-1}; and secondly, an investigation of the Gaia EDR3 parallax zeropoint using contact eclipsing binaries across the Galactic disc plane and bulge.Peer reviewe

    Predictive coupled-cluster isomer orderings for some Sin{}_nCm{}_m (m,n≤12m, n\le 12) clusters; A pragmatic comparison between DFT and complete basis limit coupled-cluster benchmarks

    Full text link
    The accurate determination of the preferred Si12C12{\rm Si}_{12}{\rm C}_{12} isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC3_3 to Si12C12{\rm Si}_{12}{\rm C}_{12}. It is found that post-MBPT(2) correlation energy plays a significant role in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and CCSD extrapolation with triple-ζ\zeta (T) correlation, the {\it closo} Si12C12{\rm Si}_{12}{\rm C}_{12} isomer is identified to be the preferred isomer in support of previous calculations [J. Chem. Phys. 2015, 142, 034303]. Additionally we have investigated more pragmatic approaches to obtaining accurate silicon carbide isomer energies, including the use of frozen natural orbital coupled-cluster theory and several rungs of standard and double-hybrid density functional theory. Frozen natural orbitals as a way to compute post MBPT(2) correlation energy is found to be an excellent balance between efficiency and accuracy
    • …
    corecore