11,715 research outputs found
Protease inhibitors prevent plasminogen-mediated, but not pemphigus vulgaris-induced, acantholysis in human epidermis
Pemphigus is an autoimmune blistering disease of the skin and mucous membranes. It is caused by autoantibodies directed against desmosomes, which are the principal adhesion structures between epidermal keratinocytes. Binding of autoantibodies leads to the destruction of desmosomes resulting in the loss of cell-cell adhesion (acantholysis) and epidermal blisters. The plasminogen activator system has been implicated as a proteolytic effector in pemphigus. We have tested inhibitors of the plasminogen activator system with regard to their potential to prevent pemphigus-induced cutaneous pathology. In a human split skin culture system, IgG preparations of sera from pemphigus vulgaris patients caused histopathologic changes (acantholysis) similar to those observed in the original pemphigus disease. All inhibitors that were tested (active site inhibitors directed against uPA, tPA, and/or plasmin; antibodies neutralizing the enzymatic activity of uPA or tPA; substances interfering with the binding of uPA to its specific cell surface receptor uPAR) failed to prevent pemphigus vulgaris IgG-mediated acantholysis. Plasminogen-mediated acantholysis, however, was effectively antagonized by the synthetic active site serine protease inhibitor WX-UK1 or by p-aminomethylbenzoic acid. Our data argue against applying anti-plasminogen activator/anti-plasmin strategies in the management of pemphigus
The rapid evolution of the exciting star of the Stingray Nebula
SAO244567, the exciting star of the Stingray nebula, is rapidly evolving.
Previous analyses suggested that it has heated up from an effective temperature
of about 21kK in 1971 to over 50kK in the 1990s. Canonical post-asymptotic
giant branch evolution suggests a relatively high mass while previous analyses
indicate a low-mass star. Fitting line profiles from static and expanding
non-LTE model atmospheres to the observed UV and optical spectra, taken during
1988-2013, allowed us to study the temporal change of effective temperature,
surface gravity, mass-loss rate, and terminal wind velocity. In addition, we
determined the chemical composition of the atmosphere. We find that the central
star has steadily increased its effective temperature from 38kK in 1988 to a
peak value of 60kK in 2002. During the same time, the star was contracting, as
concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a
drop in luminosity. Simultaneously, the mass-loss rate declined from log
(dM/dt/Msun/yr)=-9.0 to -11.6 and the terminal wind velocity increased from
1800km/s to 2800km/s. Since around 2002, the star stopped heating and has
cooled down again to 55kK by 2006. It has a largely solar surface composition
with the exception of slightly subsolar carbon, phosphorus, and sulfur. By
comparison with stellar-evolution calculations, we confirm that SAO244567 must
be a low-mass star (M < 0.55 Msun). However, the slow evolution of the
respective stellar evolutionary models is in strong contrast to the observed
fast evolution and the young planetary nebula with a kinematical age of only
about 1000 years. We speculate that the star could be a late He-shell flash
object. Alternatively, it could be the outcome of close-binary evolution. Then
SAO244567 would be a low-mass (0.354 Msun) helium prewhite dwarf after the
common-envelope phase, during which the planetary nebula was ejected.Comment: 16 pages, 13 figures, accepted for publication in A&
Kinetics of n-Butoxy and 2-Pentoxy Isomerization and Detection of Primary Products by Infrared Cavity Ringdown Spectroscopy
The primary products of n-butoxy and 2-pentoxy isomerization in the presence and absence of O_2 have been detected using pulsed laser photolysis-cavity ringdown spectroscopy (PLP-CRDS). Alkoxy radicals n-butoxy and 2-pentoxy were generated by photolysis of alkyl nitrite precursors (n-butyl nitrite or 2-pentyl nitrite, respectively), and the isomerization products with and without O_2 were detected by infrared cavity ringdown spectroscopy 20 μs after the photolysis. We report the mid-IR OH stretch (ν_1) absorption spectra for δ-HO-1-C_4H_8•, δ-HO-1-C_4H_8OO•, δ-HO-1-C_5H_(10)•, and δ-HO-1-C_5H_(10)OO•. The observed ν_1 bands are similar in position and shape to the related alcohols (n-butanol and 2-pentanol), although the HOROO• absorption is slightly stronger than the HOR• absorption. We determined the rate of isomerization relative to reaction with O_2 for the n-butoxy and 2-pentoxy radicals by measuring the relative ν_1 absorbance of HOROO• as a function of [O_2]. At 295 K and 670 Torr of N_2 or N_2/O_2, we found rate constant ratios of k_(isom)/k_(O2) = 1.7 (±0.1) × 10^(19) cm^(–3) for n-butoxy and k_(isom)/k_(O2) = 3.4(±0.4) × 10^(19) cm^(–3) for 2-pentoxy (2σ uncertainty). Using currently known rate constants k_(O2), we estimate isomerization rates of k_(isom) = 2.4 (±1.2) × 10^5 s^(–1) and k_(isom) ≈ 3 × 10^5 s^(–1) for n-butoxy and 2-pentoxy radicals, respectively, where the uncertainties are primarily due to uncertainties in k_(O2). Because isomerization is predicted to be in the high pressure limit at 670 Torr, these relative rates are expected to be the same at atmospheric pressure. Our results include corrections for prompt isomerization of hot nascent alkoxy radicals as well as reaction with background NO and unimolecular alkoxy decomposition. We estimate prompt isomerization yields under our conditions of 4 ± 2% and 5 ± 2% for n-butoxy and 2-pentoxy formed from photolysis of the alkyl nitrites at 351 nm. Our measured relative rate values are in good agreement with and more precise than previous end-product analysis studies conducted on the n-butoxy and 2-pentoxy systems. We show that reactions typically neglected in the analysis of alkoxy relative kinetics (decomposition, recombination with NO, and prompt isomerization) may need to be included to obtain accurate values of k_(isom)/k_(O2)
Structural Studies on a Mitochondrial Glyoxalase II
Glyoxalase 2 is a β-lactamase fold-containing enzyme that appears to be involved with cellular chemical detoxification. Although the cytoplasmic isozyme has been characterized from several organisms, essentially nothing is known about the mitochondrial proteins. As a first step in understanding the structure and function of mitochondrial glyoxalase 2 enzymes, a mitochondrial isozyme (GLX2-5) from Arabidopsis thaliana was cloned, overexpressed, purified, and characterized using metal analyses, EPR and 1H NMR spectroscopies, and x-ray crystallography. The recombinant enzyme was shown to bind 1.04 ± 0.15 eq of iron and 1.31 ± 0.05 eq of Zn(II) and to exhibit kcat and Km values of 129 ± 10 s-1 and 391 ± 48 μm, respectively, when using S-d-lactoylglutathione as the substrate. EPR spectra revealed that recombinant GLX2-5 contains multiple metal centers, including a predominant Fe(III)Z-n(II) center and an anti-ferromagnetically coupled Fe(III)Fe(II) center. Unlike cytosolic glyoxalase 2 from A. thaliana, GLX2-5 does not appear to specifically bind manganese. 1H NMR spectra revealed the presence of at least eight paramagnetically shifted resonances that arise from protons in close proximity to a Fe(III)Fe(II) center. Five of these resonances arose from solvent-exchangeable protons, and four of these have been assigned to NH protons on metal-bound histidines. A 1.74-Å resolution crystal structure of the enzyme revealed that although GLX2-5 shares a number of structural features with human GLX2, several important differences exist. These data demonstrate that mitochondrial glyoxalase 2 can accommodate a number of different metal centers and that the predominant metal center is Fe(III)Zn(II)
Impact of killer-immunoglobulin-like receptor and human leukocyte antigen genotypes on the efficacy of immunotherapy in acute myeloid leukemia
Interactions between killer-immunoglobulin-like receptors (KIRs) and their HLA class I ligands are instrumental in natural killer (NK) cell regulation and protect normal tissue from NK cell attack. Human KIR haplotypes comprise genes encoding mainly inhibitory receptors (KIR A) or activating and inhibitory receptors (KIR B). A substantial fraction of humans lack ligands for inhibitory KIRs (iKIRs), that is, a 'missing ligand' genotype. KIR B/x and missing ligand genotypes may thus give rise to potentially autoreactive, unlicensed NK cells. Little is known regarding the impact of such genotypes in untransplanted acute myeloid leukemia (AML). For this study, NK cell phenotypes and KIR/HLA genotypes were determined in 81 AML patients who received immunotherapy with histamine dihydrochloride and low-dose IL-2 for relapse prevention (NCT01347996). We observed that presence of unlicensed NK cells impacted favorably on clinical outcome, in particular among patients harboring functional NK cells reflected by high expression of the natural cytotoxicity receptor (NCR) NKp46. Genotype analyses suggested that the clinical benefit of high NCR expression was restricted to patients with a missing ligand genotype and/or a KIR B/x genotype. These data imply that functional NK cells are significant anti-leukemic effector cells in patients with KIR/HLA genotypes that favor NK cell autoreactivity
Goldstone bosons and a dynamical Higgs field
Higgs inflation uses the gauge variant Higgs field as the inflaton. During
inflation the Higgs field is displaced from its minimum, which results in
associated Goldstone bosons that are apparently massive. Working in a minimally
coupled U(1) toy model, we use the closed-time-path formalism to show that
these Goldstone bosons do contribute to the one-loop effective action.
Therefore the computation in unitary gauge gives incorrect results. Our
expression for the effective action is gauge invariant upon using the
background equations of motion.Comment: 27 pages, 2 figures, published version with minor correction
Metabolic syndrome and poor self-rated health as risk factors for premature employment exit:a longitudinal study among 55 016 middle-aged and older workers from the Lifelines Cohort Study and Biobank
BACKGROUND: Poor self-rated health (SRH) is a well-established risk factor for premature employment exit through unemployment, work disability, and early retirement. However, it is unclear whether the premature employment exit risk associated with underlying cardio-metabolic health conditions is fully captured by poor SRH. This study examines the metabolic syndrome (MetS), an early-stage risk factor for cardiovascular disease and type two diabetes mellitus, as a risk factor for premature employment exit while controlling for poor SRH.METHODS: We analyzed data from N = 55 016 Dutch workers (40-64 years) from five waves of the Lifelines Cohort Study and Biobank. MetS components were based on physical measures, blood markers, and medication use. SRH and employment states were self-reported. The associations between MetS, SRH, and premature employment exit types were analyzed using competing risk regression analysis.RESULTS: During 4.3 years of follow-up, MetS remained an independent risk factor for unemployment [adjusted subdistribution hazard ratio (SHR): 1.14, 95% CI: 1.03, 1.25] and work disability (adjusted SHR: 1.33, 95% CI: 1.11, 1.58) when adjusted for poor SRH, common chronic diseases related to labor market participation (i.e., cancer, musculoskeletal-, pulmonary-, and psychiatric diseases), and sociodemographic factors. MetS was not associated with early retirement.CONCLUSIONS: Poor SRH did not fully capture the risk for unemployment and work disability associated with MetS. More awareness about MetS as a 'hidden' cardio-metabolic risk factor for premature employment exit is needed among workers, employers, and occupational health professionals. Regular health check-ups including MetS assessment and MetS prevention might help to prolong healthy working lives.</p
The interaction of socioeconomic position and type 2 diabetes mellitus family history:A cross-sectional analysis of the Lifelines Cohort and Biobank Study
Background Low socioeconomic position (SEP) and family history of type 2 diabetes mellitus (T2DM) contribute to increased T2DM risk, but it is unclear whether they exacerbate each other's effect. This study examined whether SEP reinforces the association of T2DM family history with T2DM, and whether behavioural and clinical risk factors can explain this reinforcement. Methods We used cross-sectional data on 51 725 participants from Lifelines. SEP was measured as educational level and was self-reported, just as family history of T2DM. T2DM was diagnosed based on measured fasting plasma glucose and glycated haemoglobin, combined with self-reported disease and recorded medication use. We assessed interaction on the additive scale by calculating the relative excess risk due to interaction (RERI). Results ORs of T2DM were highest for males (4.37; 95% CI 3.47 to 5.51) and females (7.77; 5.71 to 10.56) with the combination of low SEP and a family history of T2DM. The RERIs of low SEP and a family history of T2DM were 0.64 (-0.33 to 1.62) for males and 3.07 (1.53 to 4.60) for females. Adjustment for behavioural and clinical risk factors attenuated associations and interactions, but risks remained increased. Conclusion Low SEP and family history of T2DM are associated with T2DM, but they also exacerbate each other's impact in females but not in males. Behavioural and clinical risk factors partly explain these gender differences, as well as the associations underlying the interaction in females. The exacerbation by low SEP of T2DM risks in T2DM families deserves attention in prevention and community care
Consistent description of NN and pi-N interactions using the solitary boson exchange potential
A unified description of NN and pi-N elastic scattering is presented in the
framework of the one solitary boson exchange potential (OSBEP). This model
already successfully applied to analyze NN scattering is now extended to
describe pi-N scattering while also improving its accuracy in the NN domain. We
demonstrate the importance of regularization of pi-N scattering amplitudes
involving Delta isobars and derivative meson-nucleon couplings, as this model
always yields finite amplitudes without recourse to phenomenological form
factors. We find an empirical scaling relation of the meson self interaction
coupling constants consistent with that previously found in the study of NN
scattering. Finally, we demonstrate that the OSBEP model does not contradict
the soft-pion theorems of pi-N scattering.Comment: 29 pages RevTeX, submitted to Phys. Rev. C, further information at
http://i04ktha.desy.d
- …