1,125 research outputs found

    Glueball calculations in large-N_c gauge theory

    Get PDF
    We use the light-front Hamiltonian of transverse lattice gauge theory to compute from first principles the glueball spectrum and light-front wavefunctions in the leading order of the 1/N_c colour expansion. We find 0^{++}, 2^{++}, and 1^{+-} glueballs having masses consistent with N_c=3 data available from Euclidean lattice path integral methods. The wavefunctions exhibit a light-front constituent gluon structure.Comment: 4 pages, 2 figures, uses macro boxedeps.tex, minor corrections in revised versio

    Intermittent or Continuous Therapy of Experimental Meningitis Due to Streptococcus pneumoniae in Rabbits: Preliminary Observations on the Postantibiotic Effect in Vivo

    Get PDF
    The relative effectiveness of bolus vs. constant intravenous administration of equivalent doses of penicillin G in killing bacteria in vivo was studied in a rabbit model of meningitis due to Streptococcus pneumoniae. Samples of cerebrospinal fluid (CSF) and serum were obtained from 30 rabbits at intervals of â©˝8 hr after treatment for determination of antibiotic concentrations and titers of viable bacteria in the CSF. When penicillin G was given by continuous infusion (105 units/hr after an initial l05-unit loading dose), concentrations of drug in serum and CSF reached a steady state in 1 hr. With intermittent bolus administration of 4 Ă— 105 units every 4 hr, higher peak and lower trough concentrations were achieved, and these concentrations paralleled those in the CSF. Although an initial acceleration in bactericidal rate was observed with the bolus infusion between the first and second hour of therapy, after the second hour the rate of bacterial killing was identical for the two methods of administration. The duration of therapy required for sterilization of the CSF was dependent only on the bacterial count before treatment and not on the mode of drug administration. The effect of single bolus intravenous administration of ampicillin was examined in experimental pneumococcal meningitis. Ampicillin was given at various dosages (3.25-62.5 mg/kg), and frequent samples of CSF were obtained for determination of concentrations of pneumococci and ampicillin. A long postantibiotic effect was observed in the CSF of all animals, and this effect consistently was longer than that observed in vitr

    Antibiotic Therapy, Endotoxin Concentration in Cerebrospinal Fluid, and Brain Edema in Experimental Escherichia coli Meningitis in Rabbits

    Get PDF
    We investigated the effect of cefotaxime and chloramphenicol on endotoxin concentrations in cerebrospinal fluid (CSF) and on the development of brain edema in rabbits with Escherichia coli meningitis. Both antibiotics were similarly effective in reducing bacterial titers. Cefotaxime, but not chloramphenicol, induced a marked increase of endotoxin in CSF, from log10 1.5 ± 0.8 to log10 2.8 ± 0.7 ng/ml (P < .01). This result was associated with an increase in brain water content (405 ± 12 g of water/100 g of dry weight compared with 389 ± 8 g in untreated controls; P < .01), whereas in animals treated with chloramphenicol, brain water content was identical to controls. The cefotaxime-induced increase in endotoxin concentration and brain edema were both neutralized by polymyxin B, which binds to the lipid A moiety of endotoxin, or by a monoclonal antibody to lipid A. These results indicate that treating gram-negative bacillary meningitis with selected antibiotics induces increased endotoxin concentrations in CSF that are associated with brain edem

    Negative diffraction pattern dynamics in nonlinear cavities with left-handed materials

    Full text link
    We study a ring cavity filled with a slab of a right-handed material and a slab of a left-handed material. Both layers are assumed to be nonlinear Kerr media. First, we derive a model for the propagation of light in a left-handed material. By constructing a mean-field model, we show that the sign of diffraction can be made either positive or negative in this resonator, depending on the thicknesses of the layers. Subsequently, we demonstrate that the dynamical behavior of the modulation instability is strongly affected by the sign of the diffraction coefficient. Finally, we study the dissipative structures in this resonator and reveal the predominance of a two-dimensional up-switching process over the formation of spatially periodic structures, leading to the truncation of the homogeneous hysteresis cycle.Comment: 8 pages, 5 figure

    Colour-Dielectric Gauge Theory on a Transverse Lattice

    Get PDF
    We investigate in some detail consequences of the effective colour-dielectric formulation of lattice gauge theory using the light-cone Hamiltonian formalism with a transverse lattice. As a quantitative test of this approach, we have performed extensive analytic and numerical calculations for 2+1-dimensional pure gauge theory in the large N limit. Because of Eguchi-Kawai reduction, one effectively studies a 1+1-dimensional gauge theory coupled to matter in the adjoint representation. We study the structure of coupling constant space for our effective potential by comparing with the physical results available from conventional Euclidean lattice Monte Carlo simulations of this system. In particular, we calculate and measure the scaling behaviour of the entire low-lying glueball spectrum, glueball wavefunctions, string tension, asymptotic density of states, and deconfining temperature. We employ a new hybrid DLCQ/wavefunction basis in our calculations of the light-cone Hamiltonian matrix elements, along with extrapolation in Tamm-Dancoff truncation, significantly reducing numerical errors. Finally we discuss, in light of our results, what further measurements and calculations could be made in order to systematically remove lattice spacing dependence from our effective potential a priori.Comment: 48 pages, Latex, uses macro boxedeps.tex, minor errors corrected in revised versio

    Transverse Lattice Approach to Light-Front Hamiltonian QCD

    Get PDF
    We describe a non-perturbative procedure for solving from first principles the light-front Hamiltonian problem of SU(N) pure gauge theory in D spacetime dimensions (D>2), based on enforcing Lorentz covariance of observables. A transverse lattice regulator and colour-dielectric link fields are employed, together with an associated effective potential. We argue that the light-front vacuum is necessarily trivial for large enough lattice spacing, and clarify why this leads to an Eguchi-Kawai dimensional reduction of observables to 1+1-dimensions in the infinite N limit. The procedure is then tested by explicit calculations for 2+1-dimensional SU(infinity) gauge theory, within a first approximation to the lattice effective potential. We identify a scaling trajectory which produces Lorentz covariant behaviour for the lightest glueballs. The predicted masses, in units of the measured string tension, are in agreement with recent results from conventional Euclidean lattice simulations. In addition, we obtain the potential between heavy sources and the structure of the glueballs from their light-front wavefunctions. Finally, we briefly discuss the extension of these calculations to 3+1-dimensions.Comment: 55 pages, uses macro boxedeps.tex, minor corrections in revised versio

    Proteomic analysis of the processes leading to Madurella mycetomatis grain formation in Galleria mellonella larvae

    Get PDF
    Mycetoma is a neglected chronic and granulomatous infection primarily associated with the fungal pathogen Madurella mycetomatis. Characteristic of this infection is the formation of grains. However, the processes leading to grain formation are not known. In this study, we employed a proteomic approach to characterise M. mycetomatis grain formation in Galleria mellonella larvae and map the processes leading to grain formation over time. For this, at 1 day, 3 days and 7 days post-inoculation, proteins from grains and hemolymph were extracted and analysed by label-free mass spectrometry. A total of 87, 51 and 48 M. mycetomatis proteins and 713, 997, 18 G. mellonella proteins were found in grains on day 1, 3 and 7 post-inoculation respectively. M. mycetomatis proteins were mainly involved in cellular metabolic processes and numerous enzymes were encountered. G. mellonella proteins were primarily involved in the nodulation process. The proteins identified were linked to nodulation and grain formation and four steps of grain formation were identified. The results of this proteomic approach could in the future be used to design novel strategies to interfere with mycetoma grain formation and to combat this difficult to treat infection
    • …
    corecore