43 research outputs found

    A functional genomic model for predicting prognosis in idiopathic pulmonary fibrosis

    Get PDF
    Background: The course of disease for patients with idiopathic pulmonary fibrosis (IPF) is highly heterogeneous. Prognostic models rely on demographic and clinical characteristics and are not reproducible. Integrating data from genomic analyses may identify novel prognostic models and provide mechanistic insights into IPF. Methods: Total RNA of peripheral blood mononuclear cells was subjected to microarray profiling in a training (45 IPF individuals) and two independent validation cohorts (21 IPF/10 controls, and 75 IPF individuals, respectively). To identify a gene set predictive of IPF prognosis, we incorporated genomic, clinical, and outcome data from the training cohort. Predictor genes were selected if all the following criteria were met: 1) Present in a gene co-expression module from Weighted Gene Co-expression Network Analysis (WGCNA) that correlated with pulmonary function (p 1.5 and false discovery rate (FDR) < 2 %; and 3) Predictive of mortality (p < 0.05) in univariate Cox regression analysis. "Survival risk group prediction" was adopted to construct a functional genomic model that used the IPF prognostic predictor gene set to derive a prognostic index (PI) for each patient into either high or low risk for survival outcomes. Prediction accuracy was assessed with a repeated 10-fold cross-validation algorithm and independently assessed in two validation cohorts through multivariate Cox regression survival analysis. Results: A set of 118 IPF prognostic predictor genes was used to derive the functional genomic model and PI. In the training cohort, high-risk IPF patients predicted by PI had significantly shorter survival compared to those labeled as low-risk patients (log rank p < 0.001). The prediction accuracy was further validated in two independent cohorts (log rank p < 0.001 and 0.002). Functional pathway analysis revealed that the canonical pathways enriched with the IPF prognostic predictor gene set were involved in T-cell biology, including iCOS, T-cell receptor, and CD28 signaling. Conclusions: Using supervised and unsupervised analyses, we identified a set of IPF prognostic predictor genes and derived a functional genomic model that predicted high and low-risk IPF patients with high accuracy. This genomic model may complement current prognostic tools to deliver more personalized care for IPF patients

    ZYZ-168 alleviates cardiac fibrosis after myocardial infarction through inhibition of ERK1/2-dependent ROCK1 activation

    Get PDF
    Selective treatments for myocardial infarction (MI) induced cardiac fibrosis are lacking. In this study, we focus on the therapeutic potential of a synthetic cardio-protective agent named ZYZ-168 towards MI-induced cardiac fibrosis and try to reveal the underlying mechanism. ZYZ-168 was administered to rats with coronary artery ligation over a period of six weeks. Ecocardiography and Masson staining showed that ZYZ-168 substantially improved cardiac function and reduced interstitial fibrosis. The expression of α–smooth muscle actin (α-SMA) and Collagen I were reduced as was the activity of matrix metalloproteinase 9 (MMP-9). These were related with decreased phosphorylation of ERK1/2 and expression of Rho-associated coiled-coil containing protein kinase 1 (ROCK1). In cardiac fibroblasts stimulated with TGF-β1, phenotypic switches of cardiac fibroblasts to myofibroblasts were observed. Inhibition of ERK1/2 phosphorylation or knockdown of ROCK1 expectedly reduced TGF-β1 induced fibrotic responses. ZYZ-168 appeared to inhibit the fibrotic responses in a concentration dependent manner, in part via a decrease in ROCK 1 expression through inhibition of the phosphorylation status of ERK1/2. For inhibition of ERK1/2 phosphorylation with a specific inhibitor reduced the activation of ROCK1. Considering its anti-apoptosis activity in MI, ZYZ-168 may be a potential drug candidate for treatment of MI-induced cardiac fibrosis

    Interaction of microtubules and actin during the post-fusion phase of exocytosis

    Get PDF
    Exocytosis is the intracellular trafficking step where a secretory vesicle fuses with the plasma membrane to release vesicle content. Actin and microtubules both play a role in exocytosis; however, their interplay is not understood. Here we study the interaction of actin and microtubules during exocytosis in lung alveolar type II (ATII) cells that secrete surfactant from large secretory vesicles. Surfactant extrusion is facilitated by an actin coat that forms on the vesicle shortly after fusion pore opening. Actin coat compression allows hydrophobic surfactant to be released from the vesicle. We show that microtubules are localized close to actin coats and stay close to the coats during their compression. Inhibition of microtubule polymerization by colchicine and nocodazole affected the kinetics of actin coat formation and the extent of actin polymerisation on fused vesicles. In addition, microtubule and actin cross-linking protein IQGAP1 localized to fused secretory vesicles and IQGAP1 silencing influenced actin polymerisation after vesicle fusion. This study demonstrates that microtubules can influence actin coat formation and actin polymerization on secretory vesicles during exocytosis

    Matrix Metalloproteinase-9-Dependent Release of IL-1β by Human Eosinophils

    No full text
    Asthma is often associated with airway eosinophilia, and therapies targeting eosinophils are now available to treat severe eosinophilic asthma. Eosinophilic asthma is often due to a type-2 immune response and production of IL-5, which leads to eosinophilopiesis and recruitment of mature eosinophils in the airways. A concomitant type-2 and type-17 response has been reported in some individuals. IL-17 may be enhanced by IL-1β production and can lead to neutrophilic inflammation. In fact, both eosinophilic and neutrophilic (mixed granulocytic) inflammation are simultaneously present in a large population of patients with asthma. In monocyte/macrophage cell populations, release of mature IL-1β occurs via toll-like receptor ligand-induced activation of the inflammasome. Within the inflammasome, a cascade of events leads to the activation of caspase-1, which cleaves pro-IL-1β protein into a mature, releasable, and active form. We have demonstrated that eosinophils can release IL-1β in a Toll-like receptor ligand-independent fashion. The objective of this study was to determine the mechanisms underlying the production and maturation of IL-1β in cytokine-activated eosinophils. Using eosinophils from circulating blood and from bronchoalveolar lavage fluid after an airway allergen challenge, the present study demonstrates that cytokine-activated eosinophils express and release a bioactive form of IL-1β with an apparent size less than the typical 17 kDa mature form produced by macrophages. Using a zymography approach and pharmacological inhibitors, we identified matrix metalloproteinase-9 (MMP-9) as a protease that cleaves pro-IL-1β into a ~15 kDa form and allows the release of IL-1β from cytokine-activated eosinophils. Therefore, we conclude that activated eosinophils produce MMP-9, which causes the release of IL-1β in an inflammasome/caspase-1-independent manner. The production of IL-1β by eosinophils may be a link between the eosinophilic/type-2 immune response and the neutrophilic/type-17 immune response that is often associated with a more severe and treatment-refractory type of asthma

    Endogenous Semaphorin-7A Impedes Human Lung Fibroblast Differentiation

    No full text
    <div><p>Semaphorin-7A is a glycosylphosphatidylinositol-anchored protein, initially characterized as an axon guidance protein. Semaphorin-7A also contributes to immune cell regulation and may be an essential pro-fibrotic factor when expressed by non-fibroblast cell types (exogenous). In mouse models, semaphorin-7A was shown to be important for TGF-ß1-induced pulmonary fibrosis characterized by myofibroblast accumulation and extracellular matrix deposition, but the cell-specific role of semaphorin-7A was not examined in fibroblasts. The purpose of this study is to determine semaphorin-7A expression by fibroblasts and to investigate the function of endogenously expressed semaphorin-7A in primary human lung fibroblasts (HLF).</p><p>Herein, we show that non-fibrotic HLF expressed high levels of cell surface semaphorin-7A with little dependence on the percentage of serum or recombinant TGF-ß1. Semaphorin-7A siRNA strongly decreased semaphorin-7A mRNA expression and reduced cell surface semaphorin-7A. Reduction of semaphorin-7A induced increased proliferation and migration of non-fibrotic HLF. Also, independent of the presence of TGF-ß1, the decline of semaphorin-7A by siRNA was associated with increased α-smooth muscle actin production and gene expression of periostin, fibronectin, laminin, and serum response factor (SRF), indicating differentiation into a myofibroblast. Conversely, overexpression of semaphorin-7A in the NIH3T3 fibroblast cell line reduced the production of pro-fibrotic markers. The inverse association between semaphorin-7A and pro-fibrotic fibroblast markers was further analyzed using HLF from idiopathic pulmonary fibrosis (IPF) (n = 6) and non-fibrotic (n = 7) lungs. Using these 13 fibroblast lines, we observed that semaphorin-7A and periostin expression were inversely correlated. In conclusion, our study indicates that endogenous semaphorin-7A in HLF plays a role in maintaining fibroblast homeostasis by preventing up-regulation of pro-fibrotic genes. Therefore, endogenous and exogenous semaphorin-7A may have opposite effects on the fibroblast phenotype.</p></div

    Autophagy Protects against Eosinophil Cytolysis and Release of DNA

    No full text
    The presence of eosinophils in the airway is associated with asthma severity and risk of exacerbations. Eosinophils deposit their damaging products in airway tissue, likely by degranulation and cytolysis. We previously showed that priming blood eosinophils with IL3 strongly increased their cytolysis on aggregated IgG. Conversely, IL5 priming did not result in significant eosinophil cytolysis in the same condition. Therefore, to identify critical events protecting eosinophils from cell cytolysis, we examined the differential intracellular events between IL5- and IL3-primed eosinophils interacting with IgG. We showed that both IL3 and IL5 priming increased the eosinophil adhesion to IgG, phosphorylation of p38, and production of reactive oxygen species (ROS), and decreased the phosphorylation of cofilin. However, autophagic flux as measured by the quantification of SQSTM1-p62 and lipidated-MAP1L3CB over time on IgG, with or without bafilomycin-A1, was higher in IL5-primed compared to IL3-primed eosinophils. In addition, treatment with bafilomycin-A1, an inhibitor of granule acidification and autophagolysosome formation, enhanced eosinophil cytolysis and DNA trap formation in IL5-primed eosinophils. Therefore, this study suggests that increased autophagy in eosinophils protects from cytolysis and the release of DNA, and thus limits the discharge of damaging intracellular eosinophilic contents

    Semaphorin-7A diminishes HLF proliferation and migration.

    No full text
    <p>HLF derived from non-fibrotic lungs were treated with either control or semaphorin-7A siRNA and cultured in 1% or 10% FBS for 48 h. A/ BrdU was incubated with cells for 6 h. Absorbance was measured using a spectrophotometric plate reader at dual wavelengths of 450–550 nm. Each condition was performed in quadruplicate (4 wells) and graphs show a mean ± SEM of 3 experiments. B/ Cells were resuspended in 0.1% FBS and migration on plastic or plexin-C1 (10 μg/ml) toward medium with 10% FBS was measured after 20 h. Graph shows an average ± SEM of 4 experiments, and * indicates statistical difference between control-siRNA and sema7A-siRNA-treated HLF.</p

    Semaphorin-7A inhibits the expression of myofibroblast markers.

    No full text
    <p>Non-fibrotic HLF were treated with control-siRNA (C), sema7A-siRNA (S) or plexin C1-siRNA (P) for 24 h before starvation in BSA for 24 h. Then, the cells were either kept in BSA or activated with TGF-ß (1 ng/ml) for 20 h. Real-time PCR was used to measure the level of expression of the indicated genes. For each gene, the first 2 graphs show the difference between C, S or P treatment, with C fixed at 1. The third graph displays the difference between TGF-ß and BSA after treatment with the control-siRNA. Graphs are an average of 3 experiments. <i>P</i> values from ANOVA analyses are shown. # indicates a statistical difference between TGF-ß and BSA.</p
    corecore