9 research outputs found

    Integrated multi-omics for rapid rare disease diagnosis on a national scale

    Get PDF
    Published online: 8 June 2023Critically ill infants and children with rare diseases need equitable access to rapid and accurate diagnosis to direct clinical management. Over 2 years, the Acute Care Genomics program provided whole-genome sequencing to 290 families whose critically ill infants and children were admitted to hospitals throughout Australia with suspected genetic conditions. The average time to result was 2.9 d and diagnostic yield was 47%. We performed additional bioinformatic analyses and transcriptome sequencing in all patients who remained undiagnosed. Long-read sequencing and functional assays, ranging from clinically accredited enzyme analysis to bespoke quantitative proteomics, were deployed in selected cases. This resulted in an additional 19 diagnoses and an overall diagnostic yield of 54%. Diagnostic variants ranged from structural chromosomal abnormalities through to an intronic retrotransposon, disrupting splicing. Critical care management changed in 120 diagnosed patients (77%). This included major impacts, such as informing precision treatments, surgical and transplant decisions and palliation, in 94 patients (60%). Our results provide preliminary evidence of the clinical utility of integrating multi-omic approaches into mainstream diagnostic practice to fully realize the potential of rare disease genomic testing in a timely manner.Sebastian Lunke ... Peer Arts ... Christopher P. Barnett ..., Chirag V. Patel ... Hamish S. Scott ... Karin S. Kassahn ... et al

    Learning from scaling up ultra-rapid genomic testing for critically ill children to a national level

    Get PDF
    In scaling up an ultra-rapid genomics program, we used implementation science principles to design and investigate influences on implementation and identify strategies required for sustainable "real-world" services. Interviews with key professionals revealed the importance of networks and relationship building, leadership, culture, and the relative advantage afforded by ultra-rapid genomics in the care of critically ill children. Although clinical geneticists focused on intervention characteristics and the fit with patient-centered care, intensivists emphasized the importance of access to knowledge, in particular from clinical geneticists. The relative advantage of ultra-rapid genomics and trust in consistent and transparent delivery were significant in creating engagement at initial implementation, with appropriate resourcing highlighted as important for longer term sustainability of implementation. Our findings demonstrate where common approaches can be used and, significantly, where there is a need to tailor support by professional role and implementation phase, to maximize the potential of ultra-rapid genomic testing to improve patient care.Stephanie Best, Helen Brown, Sebastian Lunke, Chirag Patel, Jason Pinner, Christopher P. Barnett, Meredith Wilson, Sarah A. Sandaradura, Belinda McClaren, Gemma R. Brett, Jeffrey Braithwaite and Zornitza Star

    Feasibility of ultra-rapid exome sequencing in critically Ill infants and children with suspected monogenic conditions in the Australian public health care system

    No full text
    Importance:Widespread adoption of rapid genomic testing in pediatric critical care requires robust clinical and laboratory pathways that provide equitable and consistent service across health care systems. Objective:To prospectively evaluate the performance of a multicenter network for ultra-rapid genomic diagnosis in a public health care system. Design, Setting, and Participants:Descriptive feasibility study of critically ill pediatric patients with suspected monogenic conditions treated at 12 Australian hospitals between March 2018 and February 2019, with data collected to May 2019. A formal implementation strategy emphasizing communication and feedback, standardized processes, coordination, distributed leadership, and collective learning was used to facilitate adoption. Exposures:Ultra-rapid exome sequencing. Main Outcomes and Measures:The primary outcome was time from sample receipt to ultra-rapid exome sequencing report. The secondary outcomes were the molecular diagnostic yield, the change in clinical management after the ultra-rapid exome sequencing report, the time from hospital admission to the laboratory report, and the proportion of laboratory reports returned prior to death or hospital discharge. Results:The study population included 108 patients with a median age of 28 days (range, 0 days to 17 years); 34% were female; and 57% were from neonatal intensive care units, 33% were from pediatric intensive care units, and 9% were from other hospital wards. The mean time from sample receipt to ultra-rapid exome sequencing report was 3.3 days (95% CI, 3.2-3.5 days) and the median time was 3 days (range, 2-7 days). The mean time from hospital admission to ultra-rapid exome sequencing report was 17.5 days (95% CI, 14.6-21.1 days) and 93 reports (86%) were issued prior to death or hospital discharge. A molecular diagnosis was established in 55 patients (51%). Eleven diagnoses (20%) resulted from using the following approaches to augment standard exome sequencing analysis: mitochondrial genome sequencing analysis, exome sequencing-based copy number analysis, use of international databases to identify novel gene-disease associations, and additional phenotyping and RNA analysis. In 42 of 55 patients (76%) with a molecular diagnosis and 6 of 53 patients (11%) without a molecular diagnosis, the ultra-rapid exome sequencing result was considered as having influenced clinical management. Targeted treatments were initiated in 12 patients (11%), treatment was redirected toward palliative care in 14 patients (13%), and surveillance for specific complications was initiated in 19 patients (18%). Conclusions and Relevance:This study suggests feasibility of ultra-rapid genomic testing in critically ill pediatric patients with suspected monogenic conditions in the Australian public health care system. However, further research is needed to understand the clinical value of such testing, and the generalizability of the findings to other health care settings.Sebastian Lunke, Stefanie Eggers, Meredith Wilson, Chirag Patel, Christopher P. Barnett, Jason Pinner ... et al

    Narrowing the diagnostic gap: Genomes, episignatures, long-read sequencing, and health economic analyses in an exome-negative intellectual disability cohort

    No full text
    Published online: January 19, 2024Purpose: Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. Methods: The ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. Results: The ES diagnostic yield was 42/74 (57%). GS diagnoses were made in 9/32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8/9 SNVs/CNVs undetected in older ES, confirming a GS-unique diagnostic rate of 1/32 (3%). Episignatures contributed diagnostic information in 9% with GS-corroboration in 1/32 (3%) and diagnostic clues in 2/32 (6%). A genetic aetiology for ID was detected in 51/74 (69%) families. 12 candidate disease genes were identified. Contemporary ES followed by GS cost US4,976(954,976 (95% CI: 3,704; 6,969)perdiagnosisandfirstlineGSatacostof6,969) per diagnosis and first-line GS at a cost of 7,062 (95% CI: 6,210;6,210; 8,475) per diagnosis. Conclusion: Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2,435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.Kerith-Rae Dias ... Futao Zhang ... Susan M. White ... Matthew F. Hunter, Lauren Akesson ... Mark A. Corbett, Thessa Kroes, Jozef Gecz ... et al

    Parental experiences of ultrarapid genomic testing for their critically unwell infants and children

    No full text
    Published online : 28 July 2020PURPOSE:To explore parental experiences of ultrarapid genomic testing for their critically unwell infants and children. METHODS:Parents of critically unwell children who participated in a national ultrarapid genomic diagnosis program were surveyed >12 weeks after genomic results return. Surveys consisted of custom questions and validated scales, including the Decision Regret Scale and Genomics Outcome Scale. RESULTS:With 96 survey invitations sent, the response rate was 57% (n = 55). Most parents reported receiving enough information during pretest (n = 50, 94%) and post-test (n = 44, 83%) counseling. Perceptions varied regarding benefits of testing, however most parents reported no or mild decision regret (n = 45, 82%). The majority of parents (31/52, 60%) were extremely concerned about the condition recurring in future children, regardless of actual or perceived recurrence risk. Parents whose child received a diagnostic result reported higher empowerment. CONCLUSION:This study provides valuable insight into parental experiences of ultrarapid genomic testing in critically unwell children, including decision regret, empowerment, and post-test reproductive planning, to inform design and delivery of rapid diagnosis programs. The findings suggest considerations for pre- and post-test counseling that may influence parental experiences during the testing process and beyond, such as the importance of realistically conveying the likelihood for clinical and/or personal utility.Gemma R. Brett, Melissa Martyn, Fiona Lynch, Michelle G. de Silva, Samantha Ayres, Lyndon Gallacher ... et al

    Missense variants in TAF1 and developmental phenotypes: Challenges of determining pathogenicity

    No full text
    We recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability [ID] syndrome) (MIM# 300966) caused by pathogenic variants involving the X‐linked gene TATA‐box binding protein associated factor 1 (TAF1), which participates in RNA polymerase II transcription. The initial study reported 11 families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into ID and/or autism spectrum disorder. We have now identified an additional 27 families through a genotype‐first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity, and molecular modeling was performed for those variants falling within structurally characterized domains of TAF1. A novel phenotypic clustering approach was also applied, in which the phenotypes of affected individuals were classified using 51 standardized Human Phenotype Ontology terms. Phenotypes associated with TAF1 variants show considerable pleiotropy and clinical variability, but prominent among previously unreported effects were brain morphological abnormalities, seizures, hearing loss, and heart malformations. Our allelic series broadens the phenotypic spectrum of the TAF1/MRXS33 ID syndrome and the range of TAF1 molecular defects in humans. It also illustrates the challenges for determining the pathogenicity of inherited missense variants, particularly for a gene mapping to chromosome X

    G.O.2: Mutations in LMOD3 cause severe nemaline myopathy by disrupting thin filament organisation in skeletal muscle

    No full text
    Nemaline myopathy (NM) is a disorder of the skeletal muscle thin filament characterised by muscle dysfunction and electron-dense protein accumulations (nemaline bodies). Pathogenic mutations have been described in nine genes to date, but the genetic basis remains unknown in many cases. We used whole exome sequencing (WES) in two families with NM and subsequent gene sequencing in over 540 additional genetically unresolved NM patients to identify and characterise a new genetic cause of NM. We developed a knock-down zebrafish model of this condition and used immunohistochemistry, western blotting, single-fibre contractility studies and recombinant protein studies to characterise the expression, localisation and biochemical functions of the new disease-related protein. We identified homozygous or compound heterozygous variants in LMOD3, which encodes leiomodin-3 (Lmod3) in 21 patients from 14 families. Affected individuals had severe generalised weakness and hypotonia, and most affected individuals died in the neonatal period. We demonstrated that Lmod3 is expressed from early muscle differentiation, localises to thin filaments with enrichment at the pointed ends, and has strong actin nucleating activity. Loss of Lmod3 in patient muscle results in shortening and disorganisation of thin filaments. Knockdown of lmod3 in the zebrafish replicates this phenotype. These findings define a new genetic subtype of congenital myopathy and demonstrate an essential, previously unrecognised role for Lmod3 in the regulation of sarcomeric thin filaments in skeletal muscle
    corecore