7 research outputs found

    Bone loss and aggravated autoimmune arthritis in HLA-DRβ1-bearing humanized mice following oral challenge with Porphyromonas gingivalis

    Get PDF
    BACKGROUND: The linkage between periodontal disease and rheumatoid arthritis is well established. Commonalities among the two are that both are chronic inflammatory diseases characterized by bone loss, an association with the shared epitope susceptibility allele, and anti-citrullinated protein antibodies. METHODS: To explore immune mechanisms that may connect the two seemingly disparate disorders, we measured host immune responses including T-cell phenotype and anti-citrullinated protein antibody production in human leukocyte antigen (HLA)-DR1 humanized C57BL/6 mice following exposure to the Gram-negative anaerobic periodontal disease pathogen Porphyromonas gingivalis. We measured autoimmune arthritis disease expression in mice exposed to P. gingivalis, and also in arthritis-resistant mice by flow cytometry and multiplex cytokine-linked and enzyme-linked immunosorbent assays. We also measured femoral bone density by microcomputed tomography and systemic cytokine production. RESULTS: Exposure of the gingiva of DR1 mice to P. gingivalis results in a transient increase in the percentage of Th17 cells, both in peripheral blood and cervical lymph nodes, a burst of systemic cytokine activity, a loss in femoral bone density, and the generation of anti-citrullinated protein antibodies. Importantly, these antibodies are not produced in response to P. gingivalis treatment of wild-type C57BL/6 mice, and P. gingivalis exposure triggered expression of arthritis in arthritis-resistant mice. CONCLUSIONS: Exposure of gingival tissues to P. gingivalis has systemic effects that can result in disease pathology in tissues that are spatially removed from the initial site of infection, providing evidence for systemic effects of this periodontal pathogen. The elicitation of anti-citrullinated protein antibodies in an HLA-DR1-restricted fashion by mice exposed to P. gingivalis provides support for the role of the shared epitope in both periodontal disease and rheumatoid arthritis. The ability of P. gingivalis to induce disease expression in arthritis-resistant mice provides support for the idea that periodontal infection may be able to trigger autoimmunity if other disease-eliciting factors are already present

    Chemical modification of L-glutamine to alpha-amino glutarimide on autoclaving facilitates Agrobacterium infection of host and non-host plants: A new use of a known compound

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accidental autoclaving of L-glutamine was found to facilitate the <it>Agrobacterium </it>infection of a non host plant like tea in an earlier study. In the present communication, we elucidate the structural changes in L-glutamine due to autoclaving and also confirm the role of heat transformed L-glutamine in <it>Agrobacterium </it>mediated genetic transformation of host/non host plants.</p> <p>Results</p> <p>When autoclaved at 121°C and 15 psi for 20 or 40 min, L-glutamine was structurally modified into 5-oxo proline and 3-amino glutarimide (α-amino glutarimide), respectively. Of the two autoclaved products, only α-amino glutarimide facilitated <it>Agrobacterium </it>infection of a number of resistant to susceptible plants. However, the compound did not have any <it>vir </it>gene inducing property.</p> <p>Conclusions</p> <p>We report a one pot autoclave process for the synthesis of 5-oxo proline and α-amino glutarimide from L-glutamine. Xenobiotic detoxifying property of α-amino glutarimide is also proposed.</p

    Influence of the shared epitope on the elicitation of experimental autoimmune arthritis biomarkers.

    No full text
    Our previous studies have shown that inoculation of the oral cavity of "humanized" B6.DR1/4 mice with the periodontal pathogen Porphyromonas gingivalis results in an increase in the percentage of circulating Th17 cells, loss of bone and an exacerbation of experimental autoimmune arthritis. The aim of this study was to assess the role played by the human HLA-DRβ molecule containing the shared epitope supplied as a transgene to I-A˚ (murine class II null) C57BL/6 (B6) mice in driving these findings. We compared various immune response parameters as well as alveolar and peri-articular bone loss between humanized B6.DR1 (or B6.DR4) mice and their WT (B6) counterparts. We found that the presence of the shared epitope in the context of inoculation with P. gingivalis enhanced the percentage of Th17 cells generated, dramatically enhanced bone loss and importantly allowed for the generation of CCP2⁺ ACPAs that are not found in C57BL/6 or DBA/1 arthritic mouse serum. Due to the exceedingly complex nature of environmental factors impacting on genetic elements, it has been difficult to unravel mechanisms that drive autoimmune arthritis in susceptible individuals. The findings in this study may provide one small piece of this puzzle that can help us to better understand part of this complexity

    Identification, structure and characterization of an exopolysaccharide by Histophilus somni during biofilm formation.

    Get PDF
    Background Histophilus somni, a gram-negative coccobacillus, is an obligate inhabitant of bovine and ovine mucosal surfaces, and an opportunistic pathogen responsible for respiratory disease and other systemic infections in cattle and sheep. Capsules are important virulence factors for many pathogenic bacteria, but a capsule has not been identified on H. somni. However, H. somni does form a biofilm in vitro and in vivo, and the biofilm matrix of most bacteria consists of a polysaccharide. Results Following incubation of H. somni under growth-restricting stress conditions, such as during anaerobiosis, stationary phase, or in hypertonic salt, a polysaccharide could be isolated from washed cells or culture supernatant. The polysaccharide was present in large amounts in broth culture sediment after H. somni was grown under low oxygen tension for 4-5 days (conditions favorable to biofilm formation), but not from planktonic cells during log phase growth. Immuno-transmission electron microscopy showed that the polysaccharide was not closely associated with the cell surface, and was of heterogeneous high molecular size by gel electrophoresis, indicating it was an exopolysaccharide (EPS). The EPS was a branched mannose polymer containing some galactose, as determined by structural analysis. The mannose-specific Moringa M lectin and antibodies to the EPS bound to the biofilm matrix, demonstrating that the EPS was a component of the biofilm. The addition of N-acetylneuraminic acid to the growth medium resulted in sialylation of the EPS, and increased biofilm formation. Real-time quantitative reverse transcription-polymerase chain reaction analyses indicated that genes previously identified in a putative polysaccharide locus were upregulated when the bacteria were grown under conditions favorable to a biofilm, compared to planktonic cells. Conclusions H. somni is capable of producing a branching, mannose-galactose EPS polymer under growth conditions favorable to the biofilm phase of growth, and the EPS is a component of the biofilm matrix. The EPS can be sialylated in strains with sialyltransferase activity, resulting in enhanced density of the biofilm, and suggesting that EPS and biofilm formation may be important to persistence in the bovine host. The EPS may be critical to virulence if the biofilm state is required for H. somni to persist in systemic sites.Peer reviewed: YesNRC publication: Ye

    Identification, structure, and characterization of an exopolysaccharide produced by <it>Histophilus somni </it>during biofilm formation

    No full text
    Abstract Background Histophilus somni, a gram-negative coccobacillus, is an obligate inhabitant of bovine and ovine mucosal surfaces, and an opportunistic pathogen responsible for respiratory disease and other systemic infections in cattle and sheep. Capsules are important virulence factors for many pathogenic bacteria, but a capsule has not been identified on H. somni. However, H. somni does form a biofilm in vitro and in vivo, and the biofilm matrix of most bacteria consists of a polysaccharide. Results Following incubation of H. somni under growth-restricting stress conditions, such as during anaerobiosis, stationary phase, or in hypertonic salt, a polysaccharide could be isolated from washed cells or culture supernatant. The polysaccharide was present in large amounts in broth culture sediment after H. somni was grown under low oxygen tension for 4-5 days (conditions favorable to biofilm formation), but not from planktonic cells during log phase growth. Immuno-transmission electron microscopy showed that the polysaccharide was not closely associated with the cell surface, and was of heterogeneous high molecular size by gel electrophoresis, indicating it was an exopolysaccharide (EPS). The EPS was a branched mannose polymer containing some galactose, as determined by structural analysis. The mannose-specific Moringa M lectin and antibodies to the EPS bound to the biofilm matrix, demonstrating that the EPS was a component of the biofilm. The addition of N-acetylneuraminic acid to the growth medium resulted in sialylation of the EPS, and increased biofilm formation. Real-time quantitative reverse transcription-polymerase chain reaction analyses indicated that genes previously identified in a putative polysaccharide locus were upregulated when the bacteria were grown under conditions favorable to a biofilm, compared to planktonic cells. Conclusions H. somni is capable of producing a branching, mannose-galactose EPS polymer under growth conditions favorable to the biofilm phase of growth, and the EPS is a component of the biofilm matrix. The EPS can be sialylated in strains with sialyltransferase activity, resulting in enhanced density of the biofilm, and suggesting that EPS and biofilm formation may be important to persistence in the bovine host. The EPS may be critical to virulence if the biofilm state is required for H. somni to persist in systemic sites.</p
    corecore