3 research outputs found

    The Hubble Constant: A Summary of the HST Program for the Luminosity Calibration of Type Ia Supernovae by Means of Cepheids

    Full text link
    This is the fifth and final summary paper of our 15 year program using the Hubble Space Telescope (HST) to determine the Hubble constant using Type Ia supernovae, calibrated with Cepheid variables in nearby galaxies that hosted them. Several developments not contemplated at the start of the program in 1990 have made it necessary to put the summary on H_0 on a broader basis than originally thought, making four preparatory papers necessary. The new Cepheid distances of the subset of 10 galaxies, which were hosts of normal SNeIa, give weighted mean luminosities in B, V, and I at maximum light of -19.49, -19.46, and -19.22, respectively. These calibrate the adopted SNeIa Hubble diagram from Paper III to give a global value of H_0 = 62.3 +/- 1.3 (random) +/- 5.0 (systematic). Local values of H_0 between 4.4 and 30 Mpc from Cepheids, SNeIa, 21cm-line widths, and the tip of the red-giant branch (TRGB) all agree within 5% of our global value. This agreement of H_0 on all scales from 4 - 200 Mpc finds its most obvious explanation in the smoothing effect of vacuum energy on the otherwise lumpy gravitational field due to the non-uniform distribution of the local galaxies. The physical methods of time delay of gravitational lenses and the Sunyaev-Zeldovich effect are consistent (but with large errors) with our global value. The present result is also not in contradiction with existing analyses of CMB data, because they either lead to wide error margins of H_0 or depend on the choice of unwarrented priors that couple the value of H_0 with a number of otherwise free parameters in the CMB acoustic waves. Our value of H_0 is 14% smaller than the value of H_0 found by Freedman et al. (2001) because our independent Cepheid distances to the six SNeIa-calibrating galaxies used in that analysis average 0.35mag larger than those used earlier.Comment: 52 pages, 9 figures, 8 tables, accepted for publication in Ap

    Accelerated expansion from structure formation

    Get PDF
    We discuss the physics of backreaction-driven accelerated expansion. Using the exact equations for the behaviour of averages in dust universes, we explain how large-scale smoothness does not imply that the effect of inhomogeneity and anisotropy on the expansion rate is small. We demonstrate with an analytical toy model how gravitational collapse can lead to acceleration. We find that the conjecture of the accelerated expansion being due to structure formation is in agreement with the general observational picture of structures in the universe, and more quantitative work is needed to make a detailed comparison.Comment: 44 pages, 1 figure. Expanded treatment of topics from the Gravity Research Foundation contest essay astro-ph/0605632. v2: Added references, clarified wordings. v3: Published version. Minor changes and corrections, added a referenc
    corecore