2,289 research outputs found

    Calcium-Rich Gap Transients: Tidal Detonations of White Dwarfs?

    Full text link
    We hypothesize that at least some of the recently discovered class of calcium-rich gap transients are tidal detonation events of white dwarfs (WDs) by black holes (BHs) or possibly neutron stars. We show that the properties of the calcium-rich gap transients agree well with the predictions of the tidal detonation model. Under the predictions of this model, we use a follow-up X-ray observation of one of these transients, SN 2012hn, to place weak upper limits on the detonator mass of this system that include all intermediate-mass BHs (IMBHs). As these transients are preferentially in the stellar haloes of galaxies, we discuss the possibility that these transients are tidal detonations of WDs caused by random flyby encounters with IMBHs in dwarf galaxies or globular clusters. This possibility has been already suggested in the literature but without connection to the calcium-rich gap transients. In order for the random flyby cross-section to be high enough, these events would have to be occurring inside these dense stellar associations. However, there is a lack of evidence for IMBHs in these systems, and recent observations have ruled out all but the very faintest dwarf galaxies and globular clusters for a few of these transients. Another possibility is that these are tidal detonations caused by three-body interactions, where a WD is perturbed toward the detonator in isolated multiple star systems. We highlight a number of ways this could occur, even in lower-mass systems with stellar-mass BHs or neutron stars. Finally, we outline several new observational tests of this scenario, which are feasible with current instrumentation.Comment: 10 pages, 1 figure, accepted for publication in MNRA

    Water plants past and present

    Get PDF

    Aquatic plants

    Get PDF

    The value of personal information in online markets with endogenous privacy

    Get PDF
    We investigate the effects of price discrimination on prices, profits, and consumer surplus when (a) at least one competing firm can use consumers’ private information to price discriminate yet (b) consumers can prevent such use by paying a “privacy cost.” Unlike a monopolist, competing duopolists do not always benefit from a higher privacy cost because each firm’s profit decreases—and consumer surplus increases—with that cost. Under such competition, the optimal strategy for an owner of consumer data that sells information in a single block is selling to only one firm, thereby maximizing the stakes for rival buyers. The resulting inefficiencies imply that policy makers should devote more attention to discouraging exclusivity deals and less to ensuring that consumers can easily protect their privacy

    Processing techniques development

    Get PDF
    There are no author-identified significant results in this report

    Motion denoising with application to time-lapse photography

    Get PDF
    Motions can occur over both short and long time scales. We introduce motion denoising, which treats short-term changes as noise, long-term changes as signal, and re-renders a video to reveal the underlying long-term events. We demonstrate motion denoising for time-lapse videos. One of the characteristics of traditional time-lapse imagery is stylized jerkiness, where short-term changes in the scene appear as small and annoying jitters in the video, often obfuscating the underlying temporal events of interest. We apply motion denoising for resynthesizing time-lapse videos showing the long-term evolution of a scene with jerky short-term changes removed. We show that existing filtering approaches are often incapable of achieving this task, and present a novel computational approach to denoise motion without explicit motion analysis. We demonstrate promising experimental results on a set of challenging time-lapse sequences.United States. National Geospatial-Intelligence Agency (NEGI-1582-04-0004)Shell ResearchUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-06-1-0734)National Science Foundation (U.S.) (0964004

    Phosphor Thermometry of Alumina-Forming High-Temperature Alloys Using Luminescent Rare-Earth Ions in YAG: Proof of Concept Using a Dispersion of Ce3+ -Doped YAG Particles in a FeCrAl Alloy

    Get PDF
    Most high-temperature processes require monitoring and controlling temperature, preferably with high precision and good lateral resolution. Here we evaluate the use of the technique commonly known as phosphor thermometry, which exploits the temperature dependent photoluminescence from an inorganic phosphor, for the determination of the temperature of a composite material consisting of the metallic alloy FeCrAl dispersed with phosphor particles of yttrium aluminum garnet (Y3Al5O12, YAG) doped with a small amount of luminescent Ce3+ ions (YAG:Ce3+). The results show that with some optimization and by changing the dopant ion, YAG based phosphor particles offer a unique opportunity to measure the surface temperature of metal alloys with high precision and high lateral resolution, all the way up to the maximum working temperature of alumina-forming high temperature alloys at ca. 1300 \ub0C

    Nebular-Phase Spectra of Nearby Type Ia Supernovae

    Full text link
    We present late-time spectra of eight Type Ia supernovae (SNe Ia) obtained at >200>200 days after peak brightness using the Gemini South and Keck telescopes. All of the SNe Ia in our sample were nearby, well separated from their host galaxy's light, and have early-time photometry and spectroscopy from the Las Cumbres Observatory (LCO). Parameters are derived from the light curves and spectra such as peak brightness, decline rate, photospheric velocity, and the widths and velocities of the forbidden nebular emission lines. We discuss the physical interpretations of these parameters for the individual SNe Ia and the sample in general, including comparisons to well-observed SNe Ia from the literature. There are possible correlations between early-time and late-time spectral features that may indicate an asymmetric explosion, so we discuss our sample of SNe within the context of models for an offset ignition and/or white dwarf collisions. A subset of our late-time spectra are uncontaminated by host emission, and we statistically evaluate our nondetections of Hα\alpha emission to limit the amount of hydrogen in these systems. Finally, we consider the late-time evolution of the iron emission lines, finding that not all of our SNe follow the established trend of a redward migration at >200>200 days after maximum brightness.Comment: 20 pages, 8 figures, 9 tables; accepted to MNRA
    • …
    corecore