4 research outputs found
GABA, glutamatergic dynamics and BOLD contrast assessed concurrently using functional MRS during a cognitive task
A recurring issue in functional neuroimaging is how to link task-driven haemodynamic blood oxygen level dependent functional MRI (BOLD-fMRI) responses to underlying neurochemistry at the synaptic level. Glutamate and γ-aminobutyric acid (GABA), the major excitatory and inhibitory neurotransmitters respectively, are typically measured with MRS sequences separately from fMRI, in the absence of a task. The present study aims to resolve this disconnect, developing acquisition and processing techniques to simultaneously assess GABA, glutamate and glutamine (Glx) and BOLD in relation to a cognitive task, at 3 T. Healthy subjects (N = 81) performed a cognitive task (Eriksen flanker), which was presented visually in a task-OFF, task-ON block design, with individual event onset timing jittered with respect to the MRS readout. fMRS data were acquired from the medial anterior cingulate cortex during task performance, using an adapted MEGA-PRESS implementation incorporating unsuppressed water-reference signals at a regular interval. These allowed for continuous assessment of BOLD activation, through T2*-related changes in water linewidth. BOLD-fMRI data were additionally acquired. A novel linear model was used to extract modelled metabolite spectra associated with discrete functional stimuli, building on well established processing and quantification tools. Behavioural outcomes from the flanker task, and activation patterns from the BOLD-fMRI sequence, were as expected from the literature. BOLD response assessed through fMRS showed a significant correlation with fMRI, specific to the fMRS-targeted region of interest; fMRS-assessed BOLD additionally correlated with lengthening of response time in the incongruent flanker condition. While no significant task-related changes were observed for GABA+, a significant increase in measured Glx levels (~8.8%) was found between task-OFF and task-ON periods. These findings verify the efficacy of our protocol and analysis pipelines for the simultaneous assessment of metabolite dynamics and BOLD. As well as establishing a robust basis for further work using these techniques, we also identify a number of clear directions for further refinement in future studies.publishedVersio
Neural activation in the ventromedial prefrontal cortex precedes conscious experience of being in or out of a transient hallucinatory state
Background and Hypotheses
Auditory verbal hallucinations (AVHs) is not only a common symptom in schizophrenia but also observed in individuals in the general population. Despite extensive research, AVHs are poorly understood, especially their underlying neuronal architecture. Neuroimaging methods have been used to identify brain areas and networks that are activated during hallucinations. A characteristic feature of AVHs is, however, that they fluctuate over time, with varying frequencies of starts and stops. An unanswered question is, therefore, what neuronal events co-occur with the initiation and inhibition of an AVH episode.
Study Design
We investigated brain activation with fMRI in 66 individuals who experienced multiple AVH-episodes while in the scanner. We extracted time-series fMRI-data and monitored changes second-by-second from 10 s before to 15 s after participants indicated the start and stop of an episode, respectively, by pressing a hand-held response-button.
Study Results
We found a region in the ventromedial prefrontal cortex (VMPFC) which showed a significant increase in activation initiated a few seconds before participants indicated the start of an episode, and a corresponding decrease in activation initiated a few seconds before the end of an episode.
Conclusions
The consistent increase and decrease in activation in this area in advance of the consciously experienced presence or absence of the “voice” imply that this region may act as a switch in turning episodes on and off. The activation is unlikely to be confounded by motor responses. The findings could have clinical implications for brain stimulation treatments, like transcranial magnetic stimulation.publishedVersio
Neural activation in the ventromedial prefrontal cortex precedes conscious experience of being in or out of a transient hallucinatory state
Background and Hypotheses
Auditory verbal hallucinations (AVHs) is not only a common symptom in schizophrenia but also observed in individuals in the general population. Despite extensive research, AVHs are poorly understood, especially their underlying neuronal architecture. Neuroimaging methods have been used to identify brain areas and networks that are activated during hallucinations. A characteristic feature of AVHs is, however, that they fluctuate over time, with varying frequencies of starts and stops. An unanswered question is, therefore, what neuronal events co-occur with the initiation and inhibition of an AVH episode.
Study Design
We investigated brain activation with fMRI in 66 individuals who experienced multiple AVH-episodes while in the scanner. We extracted time-series fMRI-data and monitored changes second-by-second from 10 s before to 15 s after participants indicated the start and stop of an episode, respectively, by pressing a hand-held response-button.
Study Results
We found a region in the ventromedial prefrontal cortex (VMPFC) which showed a significant increase in activation initiated a few seconds before participants indicated the start of an episode, and a corresponding decrease in activation initiated a few seconds before the end of an episode.
Conclusions
The consistent increase and decrease in activation in this area in advance of the consciously experienced presence or absence of the “voice” imply that this region may act as a switch in turning episodes on and off. The activation is unlikely to be confounded by motor responses. The findings could have clinical implications for brain stimulation treatments, like transcranial magnetic stimulation
Hallucinating schizophrenia patients have longer left arcuate fasciculus fiber tracks: a DTI tractography study
The arcuate fasciculus (AF) has been implicated in the pathology behind schizophrenia and auditory verbal hallucinations (AVHs). White matter tracts forming the arcuate fasciculus can be quantified and visualized using diffusion tensor imaging (DTI) tractography. Although there have been a number of studies on this topic, the results have been conflicting. Studying the underlying white matter structure of the AF could shed light on the constrains for interaction between temporal and frontal language areas in AVHs. The participants were 66 patients with a schizophrenia diagnosis, where AVHs were defined from the Positive and Negative Syndrome Scale (PANSS), and compared with a healthy control group. DTI was performed on a 3T MR scanner, and tensor estimation was done using deterministic streamline tractography. Statistical analysis of the data showed significantly longer reconstructed tracks along the AF in patients with severe and frequent AVHs, as well as an overall significant asymmetry with longer tracks in the left compared to the right side. In addition, there were significant positive correlations between PANSS scores and track length, track volume, and number of track streamlines for the posterior AF segment on the left side. It is concluded that the present DTI results may have implications for interpretations of functional imaging results