5 research outputs found

    Impact of olive saplings and organic amendments on soil microbial communities and effects of mineral fertilization

    Get PDF
    Plant communities and fertilization may have an impact on soil microbiome. Most commercial olive trees are minerally fertilized, while this practice is being replaced by the use of organic amendments. Organic amendments can both fertilize and promote plant growth-promoting organisms. Our aims were (i) to describe the changes in soil bacterial and fungal communities induced by the presence of young olive trees and their interaction with organic amendments and (ii) to compare the effects of mineral and organic fertilization. We set up two parallel experiments in pots using a previously homogenized soil collected from a commercial olive orchard: in the first one, we grew olive saplings in unamended and organically amended soils with two distinct composts and compared these two soils incubated without a plant, while in the second experiment, we comparatively tested the effects of organic and mineral fertilization. OTUs and the relative abundances of bacterial and fungal genera and phyla were analyzed by 16S rRNA and ITS1 gene amplicon using high-throughput sequencing. Basal respiration and substrate-induced respiration were measured by MicroRespTM. The effects of the different treatments were analyzed in all phyla and in the 100 most abundant genera. The presence of olive saplings increased substrate-induced respiration and bacterial and fungal richness and diversity. Organic amendments greatly affected both bacterial and fungal phyla and increased bacterial richness while not affecting fungal richness. Mineral fertilization increased the relative abundance of the less metabolically active bacterial phyla (Actinobacteria and Firmicutes), while it reduced the most metabolically active phylum, Bacteroidetes. Mineral fertilization increased the relative abundance of three N2-fixing Actinobacteria genera, while organic fertilization only increased one genus of Proteobacteria. In organically and minerally fertilized soils, high basal respiration rates were associated with low fungal diversity. Basidiomycota and Chytridiomycota relative abundances positively correlated with basal respiration and substrate-induced respiration, while Ascomycota correlated negatively. Indeed, the Ascomycota phyla comprised most of the fungal genera decreased by organic amendments. The symbiotrophic phylum Glomeromycota did not correlate with any of the C sources. The relative abundance of this phylum was promoted by the presence of plants but decreased when amending soils with composts

    Use of RGB Vegetation Indexes in Assessing Early Effects of Verticillium Wilt of Olive in Asymptomatic Plants in High and Low Fertility Scenarios

    No full text
    Verticillium Wilt of Olive, a disease caused by the hemibiotrophic vascular fungus Verticillium dahliae Kleb. presents one of the most important constraints to olive production in the world, with an especially notable impact in Mediterranean agriculture. This study evaluates the use of RGB vegetation indexes in assessing the effects of this disease during the biotrophic phase of host-pathogen interaction, in which symptoms of wilt are not yet evident. While no differences were detected by measuring stomatal conductance and chlorophyll fluorescence, results obtained from RGB indexes showed significant differences between control and inoculated plants for indexes Saturation, a*, b*, green Area (GA), normalized green-red difference index (NGRDI) and triangular greenness index (TGI), presenting a reduction in plant growth as well as in green and yellow color components as an effect of inoculation. These results were contrasted across two scenarios of mineral fertilization in soil and soil amended with two different olive mill waste composts, presenting a clear interaction between the host-pathogen relationship and plant nutrition and suggesting the effect of V. dahliae infection during the biotrophic phase was not related to plant water status

    Use of RGB vegetation indexes in assessing early effects of Verticillium Wilt of Olive in asymptomatic plants in high and low fertility scenarios

    Get PDF
    Verticillium Wilt of Olive, a disease caused by the hemibiotrophic vascular fungus Verticillium dahliae Kleb. presents one of the most important constraints to olive production in the world, with an especially notable impact in Mediterranean agriculture. This study evaluates the use of RGB vegetation indexes in assessing the effects of this disease during the biotrophic phase of host-pathogen interaction, in which symptoms of wilt are not yet evident. While no differences were detected by measuring stomatal conductance and chlorophyll fluorescence, results obtained from RGB indexes showed significant differences between control and inoculated plants for indexes Saturation, a*, b*, GA, NGRDI and TGI, presenting a reduction in plant growth as well as in green and yellow color components as an effect of inoculation. These results were contrasted across two scenarios of mineral fertilization in soil and soil amended with two different olive mill waste composts, presenting a clear interaction between the host-pathogen relationship and plant nutrition and suggesting the effect of V. dahliae infection during the biotrophic phase was not related to plant water status

    Use of RGB vegetation indexes in assessing early effects of Verticillium Wilt of Olive in asymptomatic plants in high and low fertility scenarios

    No full text
    Verticillium Wilt of Olive, a disease caused by the hemibiotrophic vascular fungus Verticillium dahliae Kleb. presents one of the most important constraints to olive production in the world, with an especially notable impact in Mediterranean agriculture. This study evaluates the use of RGB vegetation indexes in assessing the effects of this disease during the biotrophic phase of host-pathogen interaction, in which symptoms of wilt are not yet evident. While no differences were detected by measuring stomatal conductance and chlorophyll fluorescence, results obtained from RGB indexes showed significant differences between control and inoculated plants for indexes Saturation, a*, b*, GA, NGRDI and TGI, presenting a reduction in plant growth as well as in green and yellow color components as an effect of inoculation. These results were contrasted across two scenarios of mineral fertilization in soil and soil amended with two different olive mill waste composts, presenting a clear interaction between the host-pathogen relationship and plant nutrition and suggesting the effect of V. dahliae infection during the biotrophic phase was not related to plant water status
    corecore