42 research outputs found

    Insight of lichens as ideal models for astrobiological studies analyzed by Raman spectroscopy

    Get PDF
    Exposure experiments of different species to space conditions are essential because real space conditions with different radiation sources like ionizing radiation, UV-radiation, X-rays, gamma-ray from even galactic radiation, vacuum and space weathering by micro-dust cannot simultaneously be simulated in parallel even in our best simulation chambers on Earth. We need results from experiments under real space conditions to enable the development of appropriate predictions about the stability of organisms and their constituent organic parts. The extremophile lichen Circinaria gyrosa is one of the selected species within the BIOMEX (Biology and Mars Experiment) experiment and in this work we compare the previous Raman results obtained in this lichen [1] with the corresponding Raman results on the lichen Xanthoparmelia hueana. Both species have been exposed to space and simulated Mars-like conditions in planetary chambers and we have studied and identified possible degradation process in different layers and biomarkers. The analysis by Raman spectroscopy of simulated Space and Mars exposed samples confirm alterations and damages of the photobiont part of the lichen and changes related to the molecular structure of whewellite. The conclusions of this work will be important to understand what are the effects to consider when biological systems are exposed to space or Mars-like conditions and to expand our knowledge of how life survives in most extreme conditions that is a prerequisite in future planetary exploration projects.Acknowledgment Support for this work was provided by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO), by the project BIOindicadores en MARTE y Espacio (BIOMARSS) (PID2019-109448RB-I00) and by INTA. References [1] M.R. Lopez Ramirez, L.G Sancho, J. P. de Vera, M. Baqué, U. Böttcher, E. Rabbow, J. Martínez-Frías, R. de la Torre Noetzel. Spectrochimica Acta, Part A. 261 (2021) 120046.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    The BIOMEX experiment on-board the International Space Station: limits of life and detection of biomarkers after exposure to space- and to Mars-like conditions

    Get PDF
    To explore the limits of terrestrial life in space, we have to understand the effects of the space environment on unprotected biological and chemical material, and on the degradation of organic molecules or biomarkers. The exposure platform EXPOSE-R2 on the ISS offer a suitable facility for the exposure of samples of the astrobiological model lichen Circinaria gyrosa, included in the BIOMEX experiment (Biology and Mars Experiment, ESA). During 18 months (2014-2016), the lichens lived in a latent state at space and at simulated Mars-like conditions, to study Mars’ habitability and resistance to space conditions. After the return of the samples in June 2016, initial analysis showed rapid recovery of photosystem II (PSII) activity in the samples exposed exclusively to space vacuum and to Mars-like atmosphere. In contrast, the samples directly exposed to solar UV radiation showed a slow and a lower recovery, in reference to their observed original activity. This tendency was corroborated with the complementary morphological/ultrastructural and biomolecular analyses. Complementary, the biogeochemical variations have been examined with Raman spectroscopy to assess the possible degradation of cell surfaces and pigments which were in contact with terrestrial rocks, and Martian analogue regolith. Identification of the biomarker whewellite (calcium oxalate) and other organic compounds and mineral products of the biological activity of Circinaria gyrosa were detected by Raman Laser. These findings contribute to answer questions on the habitability of Mars, the likelihood of the Lithopanspermia Hypothesis, the capability to detect biomolecules exposed to an extraterrestrial environment by life-detection instruments and will be of relevance for planetary protection issues

    The BIOMEX Experiment on-board the International Space Station: Biomolecular- and Bio-geochemical changes of lichens exposed to space- and to Mars-like conditions

    Get PDF
    Exploration of the solar system is a priority research area of the AstRoMap European Astrobiology Roadmap (Horneck et al., 2015) [1], focused on various research topics, one of them is “Life and Habitability” and an other one is “Biomarkers for easy the detection of life”. Therefore “space platforms and laboratories” are necessary, such as EXPOSE, to gain more knowledment of space- and extraterrestrial habitats, eventually for human interplanetary exploration (Space, Moon, Mars, Encedalus, Titan, Europa). At the exposure platform EXPOSE-R2 on ISS (2014-2016), samples of the astrobiological model system Circinaria gyrosa gyrosa [3,4,5,6], belonging to the BIOMEX experiment [2], (Biology and Mars Experiment, ESA), were exposed during 18 months to space and to a Mars simulated environment, to study Mars habitability and resistance to space conditions. The data obtained by the investigation on biomarkers after being exposed to Mars-like conditions will support the analysis of data obtained during future instrumental detection operations in future space missions on Mars (i.e. ExoMars). After the return of the samples in June 2016, the first preliminary analysis showed a quick and complete recovery of metabolic activity of the control samples exposed to space vacuum and Mars-like atmosphere. In contrast, the samples directly exposed to extraterrestrial UV solar radiation showed slow recovery, in reference to their observed original activity. Here we expose the last results that show the biomolecular changes of the DNA analized by PCR and complementary sequencing techniques, in correlation with the previous results supporting changes in metabolic activity, and changes in viability (Electron- and fluorescence microscopy techniques), as well as in morphology/ultrastructure due to space vacuum and Mars atmosphere. Additionaly, the biogeochemical variations have been examined with spectroscopic analyses (Raman) to look for possible degradation of cell surfaces and pigments which were in contact with terrestrial rocks, and Martian analogue regolith. Moreover, differences were observed between samples irradiated with extraterrestrial UV solar radiation and samples positioned below defined as dark-control samples. These experiments will contribute to answer questions on the habitability of Mars, on the likelihood of the Lithopanspermia Hypothesis and will be of relevance for planetary protection issues

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript
    corecore