1,834 research outputs found

    Microglial response differences between amyloidogenic transgenic models and Alzheimer’s disease patients

    Get PDF
    Aims: The continuing failure to develop an effective treatment for Alzheimer’s disease (AD) reveals the complexity for AD pathology. Increasing evidence indicates that neuroinflammation involving particularly microglial cells contributes to disease pathogenesis. Here we analyze the differences in the microglial response between APP/PS1 model and human brains. Methods: RT-PCR, western blots, and immunostaining were performed in the hippocampus of human post mortem samples (from Braak II to Braak V-VI) and APP751SL/PS1M146L mice. In vitro studies to check the effect of S1 fractions on microglial cells were assayed. Results: In APP based models the high Abeta accumulation triggers a prominent microglial response. On the contrary, the microglial response detected in human samples is, at least, partial or really mild. This patent difference could simple reflect the lower and probably slower Abeta production observed in human hippocampal samples, in comparison with models or could reflect the consequence of a chronic long-standing microglial activation. However, beside this differential response, we also observed a prominent microglial degenerative process in Braak V-VI samples that, indeed, could compromise their normal role of surveying the brain environment and respond to the damage. This microglial degeneration, particularly relevant at the dentate gyrus of the hippocampal formation, might be mediated by the accumulation of toxic soluble phospho-tau species. Conclusions: These differences need to be considered when delineating animal models that better integrate the complexity of AD pathology and, therefore, guarantee clinical translation. Correcting dysregulated brain inflammatory responses might be a promising avenue to restore cognitive function. Supported by grants FIS PI15/00796 and FIS PI15/00957 co-financed by FEDER funds from European Union, and by Junta de Andalucia Proyecto de Excelencia CTS385 2035.Financiado por FIS PI15/00796 y FIS PI15/0095, cofinanciado por los fondos FEDER de la Unión Europea, y por Junta de Andalucia Proyecto de Excelencia CTS385 2035. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Understanding microglial responses in the frontal cortex of alzheimer´s disease patients

    Get PDF
    Microglial cells, the immune cells of the brain, and the neuroinflammatory process associated, have been postulated as a critical factor in AD pathogenesis, since the identification of genetic risk factors related to microglial function. However, the microglial role in the development/progression of AD has not been determined yet. In this sense, we have previously reported a limited activation and microglial degeneration in the hippocampus of AD patients in contrast to the proinflammatory view based on findings in amyloidogenic models. Here, we have further analyzed the functional/phenotypic profile displayed by microglial cells in other vulnerable brain region of AD patients, the frontal cortex. Immunohistochemistry and image analysis approaches were performed in the frontal cortex of post mortem samples from controls (Braak 0-II) and AD patients (Braak V-VI) including familial cases. Microglia of Braak V-VI individuals were observed forming clusters and showed, both plaque (Iba1+/TMEM119+/P2ry12-/CD45high/Trem2+) and inter-plaque (Iba1+/ TMEM119+/P2ry12-/CD45high/Trem2-) microglial activation, similar that observed in amyloidogenic mice. By contrast, homeostatic and ramified microglial cells of non-demented Braak II cases presented Iba1+/P2ry12+/TMEM119+/CD45low/Trem2- profile. Furthermore, different microglial responses were observed between sporadic and familial AD cases. These different microglial phenotypes associated with AD pathology show the heterogeneity and complexity of the microglial phenotypes and suggest different functional states of these glial cells in a region-specific manner. These data need to be considered for better understand the immunological mechanisms underlying AD progression. Modulating brain inflammatory responses might be a promising avenue to prevent cognitive dysfunction in AD patients. ISCiii:PI18/01557(AG)-PI18/01556(JV);Junta Andalucia:UMA18-FEDERJA211(AG). All cofinanced by FEDER funds (European-Union).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Abeta from APP/PS1 Alzheimer mice hippocampus induced synaptic damage in vivo and in vitro

    Get PDF
    We aim to investigate the effects of Abeta from young APP/PS1 mouse model of Alzheimer`s disease (AD) on the synaptic integrity, as the loss of synapses strongly correlates with cognitive deficits in patients. Plaque-associated abnormal swellings of neuronal processes represent the first indicator of disease development and might compromise neuronal integrity and synaptic function. Here, we examined the synaptic nature of dystrophic neurites, and the reduction of both synapses and vesicles density in presynaptic terminals along with the progressive accumulation of autophagic structures and Abeta within hippocampal synaptosomes during the aging. We analysed both the direct synaptotoxic effect of plaques in the hippocampus of this model and also the repercussion of the soluble (S1) fraction in neuronal cultures. Hippocampal synapses were observed under both optic and electron microscopy. Synapses and vesicle density were quantified in periplaque and control (plaque-free) areas by electron microscopy. Primary neuronal cultures were incubated for 48 hours with 6-month-old APP/PS1 and wild-type S1 fractions. In addition, Abeta immunodepletion was carried out with different anti-Abeta antibodies and the levels of synaptic proteins were measured by Western-blot (WB). Both synapse number and synaptic-vesicles density were significantly decreased in young APP/PS1 mice, close to the Abeta deposits, in several hippocampal layers. Importantly, there was a correlation between the synaptic deficiencies and the distance to plaques, which presented oligomeric forms in their periphery. Some presynaptic elements were abnormally swollen, containing autophagic vesicles. In addition, we found by WB a decrease in several hippocampal synaptic markers as early as 4 months of age in this model, and also in neuronal cultures incubated with S1 fractions. Significantly, the neuronal reduction in VGLUT was reversed after Abeta immunodepletion. Plaque-associated oligomeric Abeta induced an early deleterious effect on synapses that correlates with memory deficits in young APP/PS1 mice. Moreover, soluble Abeta derived from these transgenic mice reduced synaptic protein content in vitro, which was restored after immunodepletion of Abeta species. Therefore, this model produced synaptotoxic Abeta and may represent a valuable tool to test novel treatments to protect synapses as an early therapeutic approach for AD.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Disentangling the contribution of tau and abeta pathologies in transgenic models of Alzheimer's disease

    Get PDF
    AIMS: Amyloid-beta (Abeta) deposits and intraneuronal hyperphosphorylated tau are major pathological hallmarks of Alzheimer’s disease (AD). The coexistence of these aggregates in AD brains leads to synaptic dysfunction, neuronal loss and cognitive decline. Failures in protein homeostasis, along with defective glial responses, have been identified as pathological mechanisms linked to this disorder. Thus, our main objective is to better understand the differential impact of Abeta- and tau-aggregates to these processes in the hippocampus of AD models. METHODS: We analyzed APP- (APPSL/PS1M146L) and Tau- (ThyTau22 and hP301S) based models from 2 to 18 months of age. Tau and Abeta pathologies were assessed by western blotting and immunohistochemistry. Confocal microscopy was used to study microglia/aggregates relationship. Levels of synaptic proteins, autophagy and inflammatory markers were determined by quantitative PCR, WB and immunohistochemistry. RESULTS: Tau and Abeta pathologies initiated as early as 2 months of age and increased progressively with aging. Even though only APP/PS1 hippocampus showed dystrophic neurites positive to proteostatic and presynaptic markers, their protein levels were altered in both types of models from 6-9 months compared to age-matched WT mice. Inflammatory markers and microglial reactivity were barely increased in the hippocampus of ThyTau mice in contrast to P301S and APP/PS1 mice which displayed a prominent microglial response. CONCLUSIONS: Clarifying the effects of Abeta and tau separately would indeed enable the development of novel therapeutic strategies and drugs targeting pathways related to these proteinopathies. Supported by grants FIS PI15/00796 and PI15/00957 co-financed by FEDER funds from European Union, by Junta de Andalucia Proyecto de Excelencia CTS385 2035 and by grant PPIT.UMA.B1/2017.26Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Distinct Microglial Responses in Two Transgenic Murine Models of TAU Pathology

    Get PDF
    Microglial cells are crucial players in the pathological process of neurodegenerative diseases, such as Alzheimer’s disease (AD). Microglial response in AD has been principally studied in relation to amyloid-beta pathology but, comparatively, little is known about inflammatory processes associated to tau pathology. In the hippocampus of AD patients, where tau pathology is more prominent than amyloid-beta pathology, a microglial degenerative process has been reported. In this work, we have directly compared the microglial response in two different transgenic tau mouse models: ThyTau22 and P301S. Surprisingly, these two models showed important differences in the microglial profile and tau pathology. Where ThyTau22 hippocampus manifested mild microglial activation, P301S mice exhibited a strong microglial response in parallel with high phospho-tau accumulation. This differential phospho-tau expression could account for the different microglial response in these two tau strains. However, soluble (S1) fractions from ThyTau22 hippocampus presented relatively high content of soluble phospho-tau (AT8-positive) and were highly toxic for microglial cells in vitro, whereas the correspondent S1 fractions from P301S mice displayed low soluble phospho-tau levels and were not toxic for microglial cells. Therefore, not only the expression levels but the aggregation of phospho-tau should differ between both models. In fact, most of tau forms in the P301S mice were aggregated and, in consequence, forming insoluble tau species. We conclude that different factors as tau mutations, accumulation, phosphorylation, and/or aggregation could account for the distinct microglial responses observed in these two tau models. For this reason, deciphering the molecular nature of toxic tau species for microglial cells might be a promising therapeutic approach in order to restore the deficient immunological protection observed in AD hippocampus

    Constraints on Higgs boson production with large transverse momentum using H →b b ¯ decays in the ATLAS detector

    Get PDF
    This paper reports constraints on Higgs boson production with transverse momentum above 1 TeV. The analyzed data from proton-proton collisions at a center-of-mass energy of 13 TeV were recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018 and correspond to an integrated luminosity of 136 fb-1. Higgs bosons decaying into bb¯ are reconstructed as single large-radius jets recoiling against a hadronic system and are identified by the experimental signature of two b-hadron decays. The experimental techniques are validated in the same kinematic regime using the Z→bb¯ process. The 95% confidence-level upper limit on the cross section for Higgs boson production with transverse momentum above 450 GeV is 115 fb, and above 1 TeV it is 9.6 fb. The Standard Model cross section predictions for a Higgs boson with a mass of 125 GeV in the same kinematic regions are 18.4 fb and 0.13 fb, respectively

    Measurement of the polarisation of single top quarks and antiquarks produced in the t-channel at √s = 13 TeV and bounds on the tWb dipole operator from the ATLAS experiment

    Get PDF
    A simultaneous measurement of the three components of the top-quark and top-antiquark polarisation vectors in t-channel single-top-quark production is presented. This analysis is based on data from proton–proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 139 fb, collected with the ATLAS detector at the LHC. Selected events contain exactly one isolated electron or muon, large missing transverse momentum and exactly two jets, one being b-tagged. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from the background contributions. The top-quark and top-antiquark polarisation vectors are measured from the distributions of the direction cosines of the charged-lepton momentum in the top-quark rest frame. The three components of the polarisation vector for the selected top-quark event sample are Px′ = 0.01 ± 0.18, Py′ = −0.029 ± 0.027, Pz′ = 0.91 ± 0.10 and for the top-antiquark event sample they are Px′ = −0.02 ± 0.20, Py′ = −0.007 ± 0.051, Pz′ = 0.79 ± 0.16. Normalised differential cross-sections corrected to a fiducial region at the stable-particle level are presented as a function of the charged-lepton angles for top-quark and top-antiquark events inclusively and separately. These measurements are in agreement with Standard Model predictions. The angular differential cross-sections are used to derive bounds on the complex Wilson coefficient of the dimension-six O operator in the framework of an effective field theory. The obtained bounds are C ∈ [−0.9, 1.4] and C ∈ [−0.8, 0.2], both at 95% confidence level. [Figure not available: see fulltext.]

    Study of Bc+→J/ψDs+ and Bc+→J/ψDs∗+ decays in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A study of Bc+→J/ψDs+ and Bc+→J/ψDs∗+ decays using 139 fb of integrated luminosity collected with the ATLAS detector from s = 13 TeV pp collisions at the LHC is presented. The ratios of the branching fractions of the two decays to the branching fraction of the Bc+→ J/ψπ decay are measured: B(Bc+→J/ψDs+)/B(Bc+→J/ψπ+) = 2.76 ± 0.47 and B(Bc+→J/ψDs∗+)/B(Bc+→J/ψπ+) = 5.33 ± 0.96. The ratio of the branching fractions of the two decays is found to be B(Bc+→J/ψDs∗+)/B(Bc+→J/ψDs∗+) = 1.93 ± 0.26. For the Bc+→J/ψDs∗+ decay, the transverse polarization fraction, Γ/Γ, is measured to be 0.70 ± 0.11. The reported uncertainties include both the statistical and systematic components added in quadrature. The precision of the measurements exceeds that in all previous studies of these decays. These results supersede those obtained in the earlier ATLAS study of the same decays with s = 7 and 8 TeV pp collision data. A comparison with available theoretical predictions for the measured quantities is presented. [Figure not available: see fulltext.]

    A search for an unexpected asymmetry in the production of e(+)mu(-) and e(-)mu(+) pairs in proton-proton collisions recorded by the ATLAS detector at root s=13 TeV

    Get PDF
    This search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for e(+)mu(-) and e(-)mu(+) pairs to constrain physics processes beyond the Standard Model. It uses 139 fb(-1) of proton-proton collision data recorded at root s = 13 TeV at the LHC. Targeting sources of new physics which prefer final states containing e(+)mu(-) and e(-)mu(+), the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the R-parity-violating coupling lambda(23)(1)' is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when g(1R)(eu) = g(1R)(mu c) = 1, at 95% confidence level. The limit on the coupling reduces to g(1R)(eu) = g(1R)(mu c) = 0.46 for a mass of 1420 GeV

    Search for light long-lived neutral particles that decay to collimated pairs of leptons or light hadrons in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for light long-lived neutral particles with masses in the O(MeV–GeV) range is presented. The analysis targets the production of long-lived dark photons in the decay of a Higgs boson produced via gluon–gluon fusion or in association with a W boson. Events that contain displaced collimated Standard Model fermions reconstructed in the calorimeter or muon spectrometer are selected in 139 fb of s = 13 TeV pp collision data collected by the ATLAS detector at the LHC. Background estimates for contributions from Standard Model processes and instrumental effects are extracted from data. The observed event yields are consistent with the expected background. Exclusion limits are reported on the production cross-section times branching fraction as a function of the mean proper decay length cτ of the dark photon, or as a function of the dark-photon mass and kinetic mixing parameter that quantifies the coupling between the Standard Model and potential hidden (dark) sectors. A Higgs boson branching fraction above 1% is excluded at 95% CL for a Higgs boson decaying into two dark photons for dark-photon mean proper decay lengths between 10 mm and 250 mm and dark photons with masses between 0.4 GeV and 2 GeV. [Figure not available: see fulltext.]
    • …
    corecore