31,601 research outputs found

    On the distribution of the total energy of a system on non-interacting fermions: random matrix and semiclassical estimates

    Full text link
    We consider a single particle spectrum as given by the eigenvalues of the Wigner-Dyson ensembles of random matrices, and fill consecutive single particle levels with n fermions. Assuming that the fermions are non-interacting, we show that the distribution of the total energy is Gaussian and its variance grows as n^2 log n in the large-n limit. Next to leading order corrections are computed. Some related quantities are discussed, in particular the nearest neighbor spacing autocorrelation function. Canonical and gran canonical approaches are considered and compared in detail. A semiclassical formula describing, as a function of n, a non-universal behavior of the variance of the total energy starting at a critical number of particles is also obtained. It is illustrated with the particular case of single particle energies given by the imaginary part of the zeros of the Riemann zeta function on the critical line.Comment: 28 pages in Latex format, 5 figures, submitted for publication to Physica

    SIDE, a fiber fed spectrograph for the 10.4 m Gran Telescopio Canarias (GTC)

    Get PDF
    SIDE (Super Ifu Deployable Experiment) will be a second-generation, common-user instrument for the Grantecan (GTC) on La Palma (Canary Islands, Spain). It is being proposed as a spectrograph of low and intermediate resolution, highly efficient in multi-object spectroscopy and 3D spectroscopy. SIDE features the unique possibility of performing simultaneous visible and NIR observations for selected ranges. The SIDE project is leaded by the Instituto de Astrofisica de Andalucia (IAA-CSIC) in Granada (Spain) and the SIDE Consortium is formed by a total of 10 institutions from Spain, Mexico and USA. The SIDE Feasibility Study has been completed and currently the project is under revision by the GTC Project Office.Comment: 9 pages, 6 figures, to appear in "Ground-based and Airborne Instrumentation for Astronomy II" SPIE conference Proc. 7014, Marseille, 23-28 June 200

    Impact of internal bremsstrahlung on the detection of gamma-rays from neutralinos

    Full text link
    We present a detailed study of the effect of internal bremsstrahlung photons in the context of the minimal supersymmetric standard models and their impact on gamma-ray dark matter annihilation searches. We find that although this effect has to be included for the correct evaluation of fluxes of high energy photons from neutralino annihilation, its contribution is relevant only in models and at energies where the lines contribution is dominant over the secondary photons. Therefore, we find that the most optimistic supersymmetric scenarios for dark matter detection do not change significantly when including the internal bremsstrahlung. As an example, we review the gamma-ray dark matter detection prospects of the Draco dwarf spheroidal galaxy for the MAGIC stereoscopic system and the CTA project. Though the flux of high energy photons is enhanced by an order of magnitude in some regions of the parameter space, the expected fluxes are still much below the sensitivity of the instruments.Comment: 5 pages, twocolumn format, 3 figures:3 references added, accepted as Brief Report in PR

    Prediction of force coefficients for labyrinth seals

    Get PDF
    The development of a linear model for the prediction of labyrinth seal forces and on its comparison to available stiffness data is presented. A discussion of the relevance of fluid damping forces and the preliminary stages of a program to obtain data on these forces are examined. Fluid-dynamic forces arising from nonuniform pressure patterns in labyrinth seal glands are known to be potentially destablizing in high power turbomachinery. A well documented case in point is that of the space Shuttle Main Engine turbopumps. Seal forces are also an important factor for the stability of shrouded turbines, acting in that case in conjunction with the effects of blade-tip clearance variations

    Implications of the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) with Liquid Argon

    Full text link
    The CENNS-10 experiment of the COHERENT collaboration has recently reported the first detection of coherent-elastic neutrino-nucleus scattering (CEvNS) in liquid Argon with more than 3σ3 \sigma significance. In this work, we exploit the new data in order to probe various interesting parameters which are of key importance to CEvNS within and beyond the Standard Model. A dedicated statistical analysis of these data shows that the current constraints are significantly improved in most cases. We derive a first measurement of the neutron rms charge radius of Argon, and also an improved determination of the weak mixing angle in the low energy regime. We also update the constraints on neutrino non-standard interactions, electromagnetic properties and light mediators with respect to those derived from the first COHERENT-CsI data.Comment: discussion expanded including light mediators and nuclear uncertainties, figures added, references added. V3: Fig. 7 corrected, conclusions unchange
    • …
    corecore