46,407 research outputs found

    Scaling forces to asteroid surfaces: The role of cohesion

    Full text link
    The scaling of physical forces to the extremely low ambient gravitational acceleration regimes found on the surfaces of small asteroids is performed. Resulting from this, it is found that van der Waals cohesive forces between regolith grains on asteroid surfaces should be a dominant force and compete with particle weights and be greater, in general, than electrostatic and solar radiation pressure forces. Based on this scaling, we interpret previous experiments performed on cohesive powders in the terrestrial environment as being relevant for the understanding of processes on asteroid surfaces. The implications of these terrestrial experiments for interpreting observations of asteroid surfaces and macro-porosity are considered, and yield interpretations that differ from previously assumed processes for these environments. Based on this understanding, we propose a new model for the end state of small, rapidly rotating asteroids which allows them to be comprised of relatively fine regolith grains held together by van der Waals cohesive forces.Comment: 54 pages, 7 figure

    Symmetries and exact solutions of the BPS Skyrme model

    Full text link
    The BPS Skyrme model is a specific subclass of Skyrme-type field theories which possesses both a BPS bound and infinitely many soliton solutions (skyrmions) saturating that bound, a property that makes the model a very convenient first approximation to the study of some properties of nuclei and hadrons. A related property, the existence of a large group of symmetry transformations, allows for solutions of rather general shapes, among which some of them will be relevant to the description of physical nuclei. We study here the classical symmetries of the BPS Skyrme model, applying them to construct soliton solutions with some prescribed shapes, what constitutes a further important step for the reliable application of the model to strong interaction physics.Comment: Latex, 17 page

    D-Brane Interactions in a Gravitational Shock Wave Background

    Full text link
    We study D-branes in the background of a gravitational shock wave. We consider the case of parallel D-branes located on opposite sides with respect to the shock wave. Their interaction is studied by evaluating the cylinder diagram using the boundary states technique. Boundary states are defined at each D-brane and their scalar product is evaluated after propagation through the shock wave. Taking the limit where the gravitational shock wave vanishes we show that the amplitude evaluated is consistent with the flat space-time result.Comment: To be published in Modern Physics Letters A, revised version with references added, 12 page

    Reliable First-Principles Alloy Thermodynamics via Truncated Cluster Expansions

    Full text link
    In alloys cluster expansions (CE) are increasingly used to combine first-principles electronic-structure and Monte Carlo methods to predict thermodynamic properties. As a basis-set expansion in terms of lattice geometrical clusters and effective cluster interactions, the CE is exact if infinite, but is tractable only if truncated. Yet until now a truncation procedure was not well-defined and did not guarantee a reliable truncated CE. We present an optimal truncation procedure for CE basis sets that provides reliable thermodynamics. We then exemplify its importance in Ni3_3V, where the CE has failed unpredictably, and now show agreement to a range of measured values, predict new low-energy structures, and explain the cause of previous failures.Comment: 4 pages, 2 figure

    Nod2 Deficiency in mice is Associated with Microbiota Variation Favouring the Expansion of mucosal CD4+ LAP+ Regulatory Cells

    Get PDF
    Nucleotide-binding Oligomerization Domain-2 (NOD2) mutations are associated with an increased risk to develop Crohn's Disease. In previous studies, we have shown that Nod2-/- mice manifest increased proportion of Lamina Propria (LP) CD4+ LAP+ Foxp3- regulatory cells, when compared with Nod2+/+ mice, while CD4+ Foxp3 + regulatory cells were not affected. Here, we investigated the Nod2 gut microbiota, by 16S rRNA pyrosequencing, at steady state and after TNBS-colitis induction in mice reared separately or in cohousing, correlating the microbial profiles with LP regulatory T cells proportion and tissue cytokines content. We found that enrichment of Rikenella and Alistipes (Rikenellaceae) in Nod2-/- mice at 8 weeks of age reared separately was associated with increased proportion of CD4+ LAP+ Foxp3- cells and less severe TNBS-colitis. In co-housed mice the acquisition of Rickenellaceae by Nod2+/+ mice was associated with increased CD4+ LAP+ Foxp3- proportion and less severe colitis. Severe colitis was associated with enrichment of gram-negative pathobionts (Escherichia and Enterococcus), while less severe colitis with protective bacteria (Barnesiella, Odoribacter and Clostridium IV). Environmental factors acting on genetic background with different outcomes according to their impact on microbiota, predispose in different ways to inflammation. These results open a new scenario for therapeutic attempt to re-establish eubiosis in Inflammatory Bowel Disease patients with NOD2 polymorphisms

    Microcanonical treatment of black hole decay at the Large Hadron Collider

    Full text link
    This study of corrections to the canonical picture of black hole decay in large extra dimensions examines the effects of back-reaction corrected and microcanonical emission at the LHC. We provide statistical interpretations of the different multiparticle number densities in terms of black hole decay to standard model particles. Provided new heavy particles of mass near the fundamental Planck scale are not discovered, differences between these corrections and thermal decay will be insignificant at the LHC.Comment: small additions and clarifications, format for J. Phys.

    New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials

    Full text link
    We consider the Poisson-Nernst-Planck system which is well-accepted for describing dilute electrolytes as well as transport of charged species in homogeneous environments. Here, we study these equations in porous media whose electric permittivities show a contrast compared to the electric permittivity of the electrolyte phase. Our main result is the derivation of convenient low-dimensional equations, that is, of effective macroscopic porous media Poisson-Nernst-Planck equations, which reliably describe ionic transport. The contrast in the electric permittivities between liquid and solid phase and the heterogeneity of the porous medium induce strongly oscillating electric potentials (fields). In order to account for this special physical scenario, we introduce a modified asymptotic multiple-scale expansion which takes advantage of the nonlinearly coupled structure of the ionic transport equations. This allows for a systematic upscaling resulting in a new effective porous medium formulation which shows a new transport term on the macroscale. Solvability of all arising equations is rigorously verified. This emergence of a new transport term indicates promising physical insights into the influence of the microscale material properties on the macroscale. Hence, systematic upscaling strategies provide a source and a prospective tool to capitalize intrinsic scale effects for scientific, engineering, and industrial applications

    Meissner state in finite superconducting cylinders with uniform applied magnetic field

    Full text link
    We study the magnetic response of superconductors in the presence of low values of a uniform applied magnetic field. We report measurements of DC magnetization and AC magnetic susceptibility performed on niobium cylinders of different length-to-radius ratios, which show a dramatic enhance of the initial magnetization for thin samples, due to the demagnetizing effects. The experimental results are analyzed by applying a model that calculates the magnetic response of the superconductor, taking into account the effects of the demagnetizing fields. We use the results of magnetization and current and field distributions of perfectly diamagnetic cylinders to discuss the physics of the demagnetizing effects in the Meissner state of type-II superconductors.Comment: Accepted to be published in Phys. Rev. B; 15 pages, 7 ps figure
    • …
    corecore