54,828 research outputs found

    Intrinsic Curie temperature bistability in ferromagnetic semiconductor resonant tunneling diodes

    Full text link
    We predict bistability in the Curie temperature-voltage characteristic of double barrier resonant-tunneling structures with dilute ferromagnetic semiconductor quantum wells. Our conclusions are based on simulations of electrostatics and ballistic quantum transport combined with a mean-field theory description of ferromagnetism in dilute magnetic semiconductors.Comment: 10 pages, 3 figures, submitted to Phys. Rev. B; typo removed in revised version - spurious eq.12 immediately after eq.1

    A Model for Dark Matter Halos

    Full text link
    A halo model is presented which possesses a constant phase space density (Q) core followed by a radial CDM-like power law decrease in Q. The motivation for the core is the allowance for a possible primordial phase space density limit such as the Tremaine-Gunn upper bound. The space density profile derived from this model has a constant density core and falls off rapidly beyond. The new model is shown to improve the fits to the observations of LSB galaxy rotation curves, naturally provides a model which has been shown to result in a lengthened dynamical friction time scale for the Fornax dwarf spheroidal galaxy and predicts a flattening of the density profile within the Einstein radius of galaxy clusters. A constant gas entropy floor is predicted whose adiabatic constant provides a lower limit in accord with observed galaxy cluster values. While `observable-sized' cores are not seen in standard cold dark matter (CDM) simulations, phase space considerations suggest that they could appear in warm dark matter (WDM) cosmological simulations and in certain hierarchically consistent SuperWIMP scenarios.Comment: 14 pages, 3 figures, accepted for publication in Ap

    Constitutive Models for Tumour Classification

    Get PDF
    The aim of this paper is to formulate new mathematical models that will be able to differentiate not only between normal and abnormal tissues, but, more importantly, between benign and malignant tumours. We present preliminary results of a tri-phasic model and numerical simulations of the effect of cellular adhesion forces on the mechanical properties of biological tissues. We pursued the following three approaches: (i) the simulation of the time-harmonic linear elastic models to examine coarse scale effects and adhesion properties, (ii) the investigation of a tri-phasic model, with the intent of upscaling this model to determine effects of electro-mechanical coupling between cells, and (iii) the upscaling of a simple cell model as a framework for studying interface conditions at malignant cells. Each of these approaches has opened exciting new directions of research that we plan to study in the future

    Classical resolution of black hole singularities via wormholes

    Get PDF
    In certain extensions of General Relativity, wormholes generated by spherically symmetric electric fields can resolve black hole singularities without necessarily removing curvature divergences. This is shown by studying geodesic completeness, the behavior of time-like congruences going through the divergent region, and by means of scattering of waves off the wormhole. This provides an example of the logical independence between curvature divergences and space-time singularities, concepts very often identified with each other in the literature.ns of curvature divergences in the context of space-time singularities.Comment: 6 pages, 4 figures; several improvements in main body and abstract; final version to appear in Eur. Phys. J.

    Magnetism of Substitutional Co Impurities in Graphene: Realization of Single π\pi-Vacancies

    Get PDF
    We report {\it ab initio} calculations of the structural, electronic and magnetic properties of a graphene monolayer substitutionally doped with Co (Cosub_{sub}) atoms. We focus in Co because among traditional ferromagnetic elements (Fe, Co and Ni), only Cosub_{sub} atoms induce spin-polarization in graphene. Our results show the complex magnetism of Co substitutional impurites in graphene, which is mapped into simple models such as the π\pi-vacancy and Heisenberg model. The links established in our work can be used to bring into contact the engineering of nanostructures with the results of π\pi-models in defective graphene. In principle, the structures considered here can be fabricated using electron irradiation or Ar+^+ ion bombardment to create defects and depositing Co at the same time
    • …
    corecore