214 research outputs found

    Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009

    Full text link
    This critical review is focused on examples reported in the year 2009 dealing with the design of chromogenic and fluorogenic chemosensors or reagents for anions (264 references). © 2011 The Royal Society of Chemistry.Moragues Pons, ME.; Martínez Mañez, R.; Sancenón Galarza, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews. 40(5):2593-2643. doi:10.1039/c0cs00015a25932643405Schmidtchen, F. P., Gleich, A., & Schummer, A. (1989). Selective molecular hosts for anions. Pure and Applied Chemistry, 61(9), 1535-1546. doi:10.1351/pac198961091535Dietrich, B. (1993). Design of anion receptors: Applications. Pure and Applied Chemistry, 65(7), 1457-1464. doi:10.1351/pac199365071457Atwood, J. L., Holman, K. T., & Steed, J. W. (1996). Laying traps for elusive prey: recent advances in the non-covalent binding of anions. Chemical Communications, (12), 1401. doi:10.1039/cc9960001401Schmidtchen, F. P., & Berger, M. (1997). Artificial Organic Host Molecules for Anions. Chemical Reviews, 97(5), 1609-1646. doi:10.1021/cr9603845Antonisse, M. M. G., & Reinhoudt, D. N. (1998). Neutral anion receptors: design and application. Chemical Communications, (4), 443-448. doi:10.1039/a707529dGale, P. (2000). Anion coordination and anion-directed assembly: highlights from 1997 and 1998. Coordination Chemistry Reviews, 199(1), 181-233. doi:10.1016/s0010-8545(99)00149-6Gale, P. A. (2001). Anion receptor chemistry: highlights from 1999. Coordination Chemistry Reviews, 213(1), 79-128. doi:10.1016/s0010-8545(00)00364-7Gale, P. A. (2003). Anion and ion-pair receptor chemistry: highlights from 2000 and 2001. Coordination Chemistry Reviews, 240(1-2), 191-221. doi:10.1016/s0010-8545(02)00258-8Gale, P. A., & Quesada, R. (2006). Anion coordination and anion-templated assembly: Highlights from 2002 to 2004. Coordination Chemistry Reviews, 250(23-24), 3219-3244. doi:10.1016/j.ccr.2006.05.020Gale, P. A., García-Garrido, S. E., & Garric, J. (2008). Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem. Soc. Rev., 37(1), 151-190. doi:10.1039/b715825dCaltagirone, C., & Gale, P. A. (2009). Anion receptor chemistry: highlights from 2007. Chem. Soc. Rev., 38(2), 520-563. doi:10.1039/b806422aKubik, S. (2009). Amino acid containing anion receptors. Chem. Soc. Rev., 38(2), 585-605. doi:10.1039/b810531fSchmidtchen, F. P. (2005). Artificial Host Molecules for the Sensing of Anions. Anion Sensing, 1-29. doi:10.1007/b101160Schmidtchen, F. P. (2006). Reflections on the construction of anion receptors. Coordination Chemistry Reviews, 250(23-24), 2918-2928. doi:10.1016/j.ccr.2006.07.009Gale, P. A. (2006). Structural and Molecular Recognition Studies with Acyclic Anion Receptors†. Accounts of Chemical Research, 39(7), 465-475. doi:10.1021/ar040237qSessler, J. L., Camiolo, S., & Gale, P. A. (2003). Pyrrolic and polypyrrolic anion binding agents. Coordination Chemistry Reviews, 240(1-2), 17-55. doi:10.1016/s0010-8545(03)00023-7Bondy, C. R., & Loeb, S. J. (2003). Amide based receptors for anions. Coordination Chemistry Reviews, 240(1-2), 77-99. doi:10.1016/s0010-8545(02)00304-1Choi, K., & Hamilton, A. D. (2003). Macrocyclic anion receptors based on directed hydrogen bonding interactions. Coordination Chemistry Reviews, 240(1-2), 101-110. doi:10.1016/s0010-8545(02)00305-3Davis, A. P. (2006). Anion binding and transport by steroid-based receptors. Coordination Chemistry Reviews, 250(23-24), 2939-2951. doi:10.1016/j.ccr.2006.05.008Best, M. D., Tobey, S. L., & Anslyn, E. V. (2003). Abiotic guanidinium containing receptors for anionic species. Coordination Chemistry Reviews, 240(1-2), 3-15. doi:10.1016/s0010-8545(02)00256-4Llinares, J. M., Powell, D., & Bowman-James, K. (2003). Ammonium based anion receptors. Coordination Chemistry Reviews, 240(1-2), 57-75. doi:10.1016/s0010-8545(03)00019-5Schug, K. A., & Lindner, W. (2005). Noncovalent Binding between Guanidinium and Anionic Groups:  Focus on Biological- and Synthetic-Based Arginine/Guanidinium Interactions with Phosph[on]ate and Sulf[on]ate Residues. Chemical Reviews, 105(1), 67-114. doi:10.1021/cr040603jYoon, J., Kim, S. K., Singh, N. J., & Kim, K. S. (2006). Imidazolium receptors for the recognition of anions. Chemical Society Reviews, 35(4), 355. doi:10.1039/b513733kBlondeau, P., Segura, M., Pérez-Fernández, R., & de Mendoza, J. (2007). Molecular recognition of oxoanions based on guanidinium receptors. Chem. Soc. Rev., 36(2), 198-210. doi:10.1039/b603089kXu, Z., Kim, S. K., & Yoon, J. (2010). Revisit to imidazolium receptors for the recognition of anions: highlighted research during 2006–2009. Chemical Society Reviews, 39(5), 1457. doi:10.1039/b918937hGarcía-España, E., Díaz, P., Llinares, J. M., & Bianchi, A. (2006). Anion coordination chemistry in aqueous solution of polyammonium receptors. Coordination Chemistry Reviews, 250(23-24), 2952-2986. doi:10.1016/j.ccr.2006.05.018Schmuck, C. (2006). How to improve guanidinium cations for oxoanion binding in aqueous solution? Coordination Chemistry Reviews, 250(23-24), 3053-3067. doi:10.1016/j.ccr.2006.04.001Amendola, V. (2001). Anion recognition by dimetallic cryptates. Coordination Chemistry Reviews, 219-221, 821-837. doi:10.1016/s0010-8545(01)00368-xBeer, P. D., & Hayes, E. J. (2003). Transition metal and organometallic anion complexation agents. Coordination Chemistry Reviews, 240(1-2), 167-189. doi:10.1016/s0010-8545(02)00303-xSteed, J. W. (2009). Coordination and organometallic compounds as anion receptors and sensors. Chem. Soc. Rev., 38(2), 506-519. doi:10.1039/b810364jO’Neil, E. J., & Smith, B. D. (2006). Anion recognition using dimetallic coordination complexes. Coordination Chemistry Reviews, 250(23-24), 3068-3080. doi:10.1016/j.ccr.2006.04.006Rice, C. R. (2006). Metal-assembled anion receptors. Coordination Chemistry Reviews, 250(23-24), 3190-3199. doi:10.1016/j.ccr.2006.05.017Amendola, V., & Fabbrizzi, L. (2009). Anion receptors that contain metals as structural units. Chem. Commun., (5), 513-531. doi:10.1039/b808264mMartínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421eKatayev, E. A., Ustynyuk, Y. A., & Sessler, J. L. (2006). Receptors for tetrahedral oxyanions. Coordination Chemistry Reviews, 250(23-24), 3004-3037. doi:10.1016/j.ccr.2006.04.013Suksai, C., & Tuntulani, T. (2003). Chromogenic anion sensors. Chemical Society Reviews, 32(4), 192. doi:10.1039/b209598jKim, S. K., Lee, D. H., Hong, J.-I., & Yoon, J. (2009). Chemosensors for Pyrophosphate. Accounts of Chemical Research, 42(1), 23-31. doi:10.1021/ar800003fBeer, P. (2000). Electrochemical and optical sensing of anions by transition metal based receptors. Coordination Chemistry Reviews, 205(1), 131-155. doi:10.1016/s0010-8545(00)00237-xBeer, P. D. (1996). Anion selective recognition and optical/electrochemical sensing by novel transition-metal receptor systems. Chemical Communications, (6), 689. doi:10.1039/cc9960000689De Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., & Rice, T. E. (1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews, 97(5), 1515-1566. doi:10.1021/cr960386pGunnlaugsson, T., Glynn, M., Tocci (née Hussey), G. M., Kruger, P. E., & Pfeffer, F. M. (2006). Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews, 250(23-24), 3094-3117. doi:10.1016/j.ccr.2006.08.017Amendola, V., Esteban-Gómez, D., Fabbrizzi, L., & Licchelli, M. (2006). What Anions Do to N−H-Containing Receptors. Accounts of Chemical Research, 39(5), 343-353. doi:10.1021/ar050195lGunnlaugsson, T., Ali, H. D. P., Glynn, M., Kruger, P. E., Hussey, G. M., Pfeffer, F. M., … Tierney, J. (2005). Fluorescent Photoinduced Electron Transfer (PET) Sensors for Anions; From Design to Potential Application. Journal of Fluorescence, 15(3), 287-299. doi:10.1007/s10895-005-2627-yWiskur, S. L., Ait-Haddou, H., Lavigne, J. J., & Anslyn, E. V. (2001). Teaching Old Indicators New Tricks. Accounts of Chemical Research, 34(12), 963-972. doi:10.1021/ar9600796Nguyen, B. T., & Anslyn, E. V. (2006). Indicator–displacement assays. Coordination Chemistry Reviews, 250(23-24), 3118-3127. doi:10.1016/j.ccr.2006.04.009Xu, Z., Chen, X., Kim, H. N., & Yoon, J. (2010). Sensors for the optical detection ofcyanide ion. Chem. Soc. Rev., 39(1), 127-137. doi:10.1039/b907368jMartínez-Máñez, R., & Sancenón, F. (2005). New Advances in Fluorogenic Anion Chemosensors. Journal of Fluorescence, 15(3), 267-285. doi:10.1007/s10895-005-2626-zHijji, Y. M., Barare, B., Kennedy, A. P., & Butcher, R. (2009). Synthesis and photophysical characterization of a Schiff base as anion sensor. Sensors and Actuators B: Chemical, 136(2), 297-302. doi:10.1016/j.snb.2008.11.045Zhang, Y.-M., Lin, Q., Wei, T.-B., Wang, D.-D., Yao, H., & Wang, Y.-L. (2009). Simple colorimetric sensors with high selectivity for acetate and chloride in aqueous solution. Sensors and Actuators B: Chemical, 137(2), 447-455. doi:10.1016/j.snb.2009.01.015Anzenbacher, P., Nishiyabu, R., & Palacios, M. A. (2006). N-confused calix[4]pyrroles. Coordination Chemistry Reviews, 250(23-24), 2929-2938. doi:10.1016/j.ccr.2006.09.001Anzenbacher,, P., Try, A. C., Miyaji, H., Jursíková, K., Lynch, V. M., Marquez, M., & Sessler, J. L. (2000). Fluorinated Calix[4]pyrrole and Dipyrrolylquinoxaline:  Neutral Anion Receptors with Augmented Affinities and Enhanced Selectivities. Journal of the American Chemical Society, 122(42), 10268-10272. doi:10.1021/ja002112wBlack, C. B., Andrioletti, B., Try, A. C., Ruiperez, C., & Sessler, J. L. (1999). Dipyrrolylquinoxalines:  Efficient Sensors for Fluoride Anion in Organic Solution. Journal of the American Chemical Society, 121(44), 10438-10439. doi:10.1021/ja992579aMizuno, T., Wei, W.-H., Eller, L. R., & Sessler, J. L. (2002). Phenanthroline Complexes Bearing Fused Dipyrrolylquinoxaline Anion Recognition Sites:  Efficient Fluoride Anion Receptors. Journal of the American Chemical Society, 124(7), 1134-1135. doi:10.1021/ja017298tMaeda, H., & Kusunose, Y. (2005). Dipyrrolyldiketone Difluoroboron Complexes: Novel Anion Sensors With C-H⋅⋅⋅X− Interactions. Chemistry - A European Journal, 11(19), 5661-5666. doi:10.1002/chem.200500627Ghosh, T., Maiya, B. G., & Samanta, A. (2006). A colorimetric chemosensor for both fluoride and transition metal ions based on dipyrrolyl derivative. Dalton Transactions, (6), 795. doi:10.1039/b510469fAldakov, D., & Anzenbacher, P. (2004). Sensing of Aqueous Phosphates by Polymers with Dual Modes of Signal Transduction. Journal of the American Chemical Society, 126(15), 4752-4753. doi:10.1021/ja039934oSessler, J. L., Cho, D.-G., & Lynch, V. (2006). Diindolylquinoxalines:  Effective Indole-Based Receptors for Phosphate Anion. Journal of the American Chemical Society, 128(51), 16518-16519. doi:10.1021/ja067720bChauhan, S. M. S., Bisht, T., & Garg, B. (2009). 1-Arylazo-5,5-dimethyl dipyrromethanes: Versatile chromogenic probes for anions. Sensors and Actuators B: Chemical, 141(1), 116-123. doi:10.1016/j.snb.2009.06.013Liu, W.-X., Yang, R., Li, A.-F., Li, Z., Gao, Y.-F., Luo, X.-X., … Jiang, Y.-B. (2009). N-(Acetamido)thiourea based simple neutral hydrogen-bonding receptors for anions. Organic & Biomolecular Chemistry, 7(19), 4021. doi:10.1039/b910255hBabu, J. N., Bhalla, V., Kumar, M., Puri, R. K., & Mahajan, R. K. (2009). Chloride ion recognition using thiourea/urea based receptors incorporated into 1,3-disubstituted calix[4]arenes. New Journal of Chemistry, 33(3), 675. doi:10.1039/b816610bBoiocchi, M., Fabbrizzi, L., Garolfi, M., Licchelli, M., Mosca, L., & Zanini, C. (2009). Templated Synthesis of Copper(II) Azacyclam Complexes Using Urea as a Locking Fragment and Their Metal-Enhanced Binding Tendencies towards Anions. Chemistry - A European Journal, 15(42), 11288-11297. doi:10.1002/chem.200901364Lin, Y.-S., Tu, G.-M., Lin, C.-Y., Chang, Y.-T., & Yen, Y.-P. (2009). Colorimetric anion chemosensors based on anthraquinone: naked-eye detection of isomeric dicarboxylate and tricarboxylate anions. New Journal of Chemistry, 33(4), 860. doi:10.1039/b811172cQing, G.-Y., Sun, T.-L., Wang, F., He, Y.-B., & Yang, X. (2009). Chromogenic Chemosensors forN-Acetylaspartate Based on Chiral Ferrocene-Bearing Thiourea Derivatives. European Journal of Organic Chemistry, 2009(6), 841-849. doi:10.1002/ejoc.200800961Lu, Q.-S., Dong, L., Zhang, J., Li, J., Jiang, L., Huang, Y., … Yu, X.-Q. (2009). Imidazolium-Functionalized BINOL as a Multifunctional Receptor for Chromogenic and Chiral Anion Recognition. Organic Letters, 11(3), 669-672. doi:10.1021/ol8027303Bao, X., Yu, J., & Zhou, Y. (2009). Selective colorimetric sensing for F− by a cleft-shaped anion receptor containing amide and hydroxyl as recognition units. Sensors and Actuators B: Chemical, 140(2), 467-472. doi:10.1016/j.snb.2009.04.056Bhardwaj, V. K., Hundal, M. S., & Hundal, G. (2009). A tripodal receptor bearing catechol groups for the chromogenic sensing of F− ions via frozen proton transfer. Tetrahedron, 65(41), 8556-8562. doi:10.1016/j.tet.2009.08.023Caltagirone, C., Mulas, A., Isaia, F., Lippolis, V., Gale, P. A., & Light, M. E. (2009). Metal-induced pre-organisation for anion recognition in a neutral platinum-containing receptor. Chemical Communications, (41), 6279. doi:10.1039/b912942aShiraishi, Y., Maehara, H., Sugii, T., Wang, D., & Hirai, T. (2009). A BODIPY–indole conjugate as a colorimetric and fluorometric probe for selective fluoride anion detection. Tetrahedron Letters, 50(29), 4293-4296. doi:10.1016/j.tetlet.2009.05.018Shiraishi, Y., Maehara, H., & Hirai, T. (2009). Indole-azadiene conjugate as a colorimetric and fluorometric probe for selective fluoride ion sensing. Organic & Biomolecular Chemistry, 7(10), 2072. doi:10.1039/b821466bBhosale, S. V., Bhosale, S. V., Kalyankar, M. B., & Langford, S. J. (2009). A Core-Substituted Naphthalene Diimide Fluoride Sensor. Organic Letters, 11(23), 5418-5421. doi:10.1021/ol9022722Lin, Z., Chen, H. C., Sun, S.-S., Hsu, C.-P., & Chow, T. J. (2009). Bifunctional maleimide dyes as selective anion sensors. Tetrahedron, 65(27), 5216-5221. doi:10.1016/j.tet.2009.04.090Yoo, J., Kim, M.-S., Hong, S.-J., Sessler, J. L., & Lee, C.-H. (2009). Selective Sensing of Anions with Calix[4]pyrroles Strapped with Chromogenic Dipyrrolylquinoxalines. The Journal of Organic Chemistry, 74(3), 1065-1069. doi:10.1021/jo802059cShang, X.-F., Li, J., Lin, H., Jiang, P., Cai, Z.-S., & Lin, H.-K. (2009). Anion recognition and sensing of ruthenium(ii) and cobalt(ii) sulfonamido complexes. Dalton Transactions, (12), 2096. doi:10.1039/b804445gDydio, P., Zieliński, T., & Jurczak, J. (2009). Bishydrazide Derivatives of Isoindoline as Simple Anion Receptors. The Journal of Organic Chemistry, 74(4), 1525-1530. doi:10.1021/jo802288uZimmermann-Dimer, L. M., Reis, D. C., Machado, C., & Machado, V. G. (2009). Chromogenic anionic chemosensors based on protonated merocyanine solvatochromic dyes in trichloromethane and in trichloromethane–water biphasic system. Tetrahedron, 65(21), 4239-4248. doi:10.1016/j.tet.2009.03.049Goswami, S., Hazra, A., Chakrabarty, R., & Fun, H.-K. (2009). Recognition of Carboxylate Anions and Carboxylic Acids by Selenium-Based New Chromogenic Fluorescent Sensor: A Remarkable Fluorescence Enhancement of Hindered Carboxylates. Organic Letters, 11(19), 4350-4353. doi:10.1021/ol901737sBarnard, A., Dickson, S. J., Paterson, M. J., Todd, A. M., & Steed, J. W. (2009). Enantioselective lactate binding by chiral tripodal anion hosts derived from amino acids. Organic & Biomolecular Chemistry, 7(8), 1554. doi:10.1039/b817889eHung, C.-Y., Singh, A. S., Chen, C.-W., Wen, Y.-S., & Sun, S.-S. (2009). Colorimetric and luminescent sensing of F− anion through strong anion–π interaction inside the π-acidic cavity of a pyridyl-triazine bridged trinuclear Re(i)–tricarbonyl diimine complex. Chemical Communications, (12), 1511. doi:10.1039/b820234fMetzger, A., & Anslyn, E. V. (1998). A Chemosensor for Citrate in Beverages. Angewandte Chemie International Edition, 37(5), 649-652. doi:10.1002/(sici)1521-3773(19980316)37:53.0.co;2-hNiikura, K., Metzger, A., & Anslyn, E. V. (1998). Chemosensor Ensemble with Selectivity for Inositol-Trisphosphate. Journal of the American Chemical Society, 120(33), 8533-8534. doi:10.1021/ja980990cAït-Haddou, H., Wiskur, S. L., Lynch, V. M., & Anslyn, E. V. (2001). Achieving Large Color Changes in Response to the Presence of Amino Acids:  A Molecular Sensing Ensemble with Selectivity for Aspartate. Journal of the American Chemical Society, 123(45), 11296-11297. doi:10.1021/ja011905vWiskur, S. L., & Anslyn, E. V. (2001). Using a Synthetic Receptor to Create an Optical-Sensing Ensemble for a Class of Analytes:  A Colorimetric Assay for the Aging of Scotch. Journal of the American Chemical Society, 123(41), 10109-10110. doi:10.1021/ja011800sZhong, Z., & Anslyn, E. V. (2002). A Colorimetric Sensing Ensemble for Heparin. Journal of the American Chemical Society, 124(31), 9014-9015. doi:10.1021/ja020505kLavigne, J. J., & Anslyn, E. V. (1999). Teaching Old Indicators New Tricks: A Colorimetric Chemosensing Ensemble for Tartrate/Malate in Beverages. Angewandte Chemie International Edition, 38(24), 3666-3669. doi:10.1002/(sici)1521-3773(19991216)38:243.0.co;2-eWiskur, S. L., Floriano, P. N., Anslyn, E. V., & McDevitt, J. T. (2003). A Multicomponent Sensing Ensemble in Solution: Differentiation between Structurally Similar Analytes. Angewandte Chemie International Edition, 42(18), 2070-2072. doi:10.1002/anie.200351058Fabbrizzi, L., Marcotte, N., Stomeo, F., & Taglietti, A. (2002). Pyrophosphate Detection in Water by Fluorescence Competition Assays: Inducing Selectivity through the Choice of the Indicator. Angewandte Chemie International Edition, 41(20), 3811-3814. doi:10.1002/1521-3773(20021018)41:203.0.co;2-wHortalá, M. A., Fabbrizzi, L., Marcotte, N., Stomeo, F., & Taglietti, A. (2003). Designing the Selectivity of the Fluorescent Detection of Amino Acids:  A Chemosensing Ensemble for Histidine. Journal of the American Chemical Society, 125(1), 20-21. doi:10.1021/ja027110lFabbrizzi, L., Leone, A., & Taglietti, A. (2001). A Chemosensing Ensemble for Selective Carbonate Detection in Water Based on Metal-Ligand Interactions. Angewandte Chemie International Edition, 40(16), 3066-3069. doi:10.1002/1521-3773(20010817)40:163.0.co;2-0Kim, S. Y., & Hong, J.-I. (2009). Dual signal (color change and fluorescence ON–OFF) ensemble system based on bis(Dpa-CuII) complex for detection of PPi in water. Tetrahedron Letters, 50(17), 1951-1953. doi:10.1016/j.tetlet.2009.02.036Khatua, S., Kim, K., Kang, J., Huh, J. O., Hong, C. S., & Churchill, D. G. (2009). Synthesis, Structure, Magnetic Properties and Aqueous Optical Citrate Detection of Chiral Dinuclear CuIIComplexes. European Journal of Inorganic Chemistry, 2009(22), 3266-3274. doi:10.1002/ejic.200900357Wright, A. T., & Anslyn, E. V. (2006). Differential receptor arrays and assays for solution-based molecular recognition. Chem. Soc. Rev., 35(1), 14-28. doi:10.1039/b505518kKitamura, M., Shabbir, S. H., & Anslyn, E. V. (2009). Guidelines for Pattern Recognition Using Differential Receptors and Indicator Displacement Assays. The Journal of Organic Chemistry, 74(12), 4479-4489. doi:10.1021/jo900433jZhang, T., Edwards, N. Y., Bonizzoni, M., & Anslyn, E. V. (2009). The Use of Differential Receptors to Pattern Peptide Phosphorylation. Journal of the American Chemical Society, 131(33), 11976-11984. doi:10.1021/ja9041675Zhang, D. (2009). Highly selective colorimetric detection of cysteine and homocysteine in water through a direct displacement approach. Inorganic Chemistry Communications, 12(12), 1255-1258. doi:10.1016/j.inoche.2009.09.035Li, S., Zhou, Y., Yu, C., Chen, F., & Xu, J. (2009). Switching the ligand-exchange reactivities of chloro-bridged cyclopalladated azobenzenes for the colorimetric sensing of thiocyanate. New Journal of Chemistry, 33(7), 1462. doi:10.1039/b903752gMännel-Croisé, C., & Zelder, F. (2009). Side Chains of Cobalt Corrinoids Control the Sensitivity and Selectivity in the Colorimetric Detection of Cyanide. Inorganic Chemistry, 48(4), 1272-1274. doi:10.1021/ic900053hMullen, K. M., Davis, J. J., & Beer, P. D. (2009). Anion induced displacement studies in naphthalene diimide containing interpenetrated and interlocked structures. New Journal of Chemistry, 33(4), 769. doi:10.1039/b819322cSancenón, F., Martínez-Máñez, R., Miranda, M. A., Seguí, M.-J., & Soto, J. (2003). Towards the Development of Colorimetric Probes to Discriminate between Isomeric Dicarboxylates. Angewandte Chemie International Edition, 42(6), 647-650. doi:10.1002/anie.200390178Jiménez, D., Martínez-Máñez, R., Sancenón, F., Ros-Lis, J. V., Benito, A., & Soto, J. (2003). A New Chromo-chemodosimeter Selective for Sulfide Anion. Journal of the American Chemical Society, 125(30), 9000-9001. doi:10.1021/ja0347336Solé, S., & Gabbaï, F. P. (2004). A bidentate borane as colorimetric fluoride ion sensor. Chem. Commun., (11), 1284-1285. doi:10.1039/b403596hWang, W., Escobedo, J. O., Lawrence, C. M., & Strongin, R. M. (2004). Direct Detection of Homocysteine. Journal of the American Chemical Society, 126(11), 3400-3401. doi:10.1021/ja0318838Zhang, M., Yu, M., Li, F., Zhu, M., Li, M., Gao, Y., … Huang, C. (2007). A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging. Journal of the American Chemical Society, 129(34), 10322-10323. doi:10.1021/ja073140iCho, D.-G., Kim, J. H., & Sessler, J. L. (200

    Chromo-fluorogenic probes for beta-galactosidase detection

    Full text link
    [EN] beta-Galactosidase (beta-Gal) is a widely used enzyme as a reporter gene in the field of molecular biology which hydrolyzes the beta-galactosides into monosaccharides. beta-Gal is an essential enzyme in humans and its deficiency or its overexpression results in several rare diseases. Cellular senescence is probably one of the most relevant physiological disorders that involve beta-Gal enzyme. In this review, we assess the progress made to date in the design of molecular-based probes for the detection of beta-Gal both in vitro and in vivo. Most of the reported molecular probes for the detection of beta-Gal consist of a galactopyranoside residue attached to a signalling unit through glycosidic bonds. The beta-Gal-induced hydrolysis of the glycosidic bonds released the signalling unit with remarkable changes in color and/or emission. Additional examples based on other approaches are also described. The wide applicability of these probes for the rapid and in situ detection of de-regulation beta-Gal-related diseases has boosted the research in this fertile fieldR.M laboratory members received the financial support from the Spanish Government (project RTI2018-100910-B-C41) and the Generalitat Valenciana (project PROMETEO 2018/024). B.L-T. received support from the Spanish Ministry of Economy for their PhD grants (FPU15/02707). J. F.-B received fellowship (CD19/00038)Lozano-Torres, B.; Blandez, JF.; Sancenón Galarza, F.; Martínez-Máñez, R. (2021). Chromo-fluorogenic probes for beta-galactosidase detection. Analytical and Bioanalytical Chemistry. 413(9):2361-2388. https://doi.org/10.1007/s00216-020-03111-8S236123884139Fernandes P. Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res. 2010;2010:86253–73.Likidlilid A, Patchanans N, Peerapatdit T, Sriratanasathavorn C. Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. J Med Assoc Thail. 2010;93(6):682–93.Pinto N, Dolan ME. Clinically relevant genetic variations in drug metabolizing enzymes. Curr Drug Metab. 2011;12(5):487–97.Giannini EG, Testa R, Savarinom V. Liver enzyme alteration: a guide for clinicians. CMAJ. 2005;172(3):367–79.Peters C, Shapiro EG, Krivit W. Hurler syndrome: past, present, and future. J Pediatr. 1998;133(1):7–9.Rodriguez M, O'Brien JS, Garrett RS, Powell HC. Canine GM1 gangliosidosis: an ultrastructural and biochemical study. J Neuropathol Exp Neurol. 1982;41(6):618–29.Cozma C, Eichler S, Wittmann G, Flores Bonet A, Kramp G, Giese AK, et al. Diagnosis of Morquio syndrome in dried blood spots based on a new MRM-MS assay. PLoS One. 2015;10(7):e0131228.Suzuki K, Suzuki Y. Globoid cell leucodystrophy (Krabbe's disease): deficiency of galactocerebroside beta-galactosidase. Proc Natl Acad Sci U S A. 1970;66(2):302–9.Holtzman D, Ulrich J. Senescent glia spell trouble in Alzheimer’s disease. Nat Neurosci. 2019;22(5):683–4.Robert L, Fulop T. Aging: facts and theories. Indian J Med Res. 2016;143(3):385–6.Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363–7.Biran A, Zada L, Karam PA, Vadai E, Roitman L, et al. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16(4):661–71.Grynkiewicz G, Poenie M, Tsien RY, Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly fluorescence properties. J Biol Chem. 1985;260(6):3440–50.de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJ, McCoy CP, Rademacher JT, et al. Signaling recognition events with fluorescent sensors and switches. Chem Rev. 1997;97(5):1515–66.Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev. 2008;108(5):1517–49.Ueno T, Nagano T. Fluorescent probes for sensing and imaging. Nat Methods. 2011;8(8):642–5.Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010;110(5):2620–40.Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev. 2000;205(1):3–40.Kim HM, Cho BR. Small-molecule two-photon probes for bioimaging applications. Chem Rev. 2015;115(11):5014–55.Huang J, Pu K. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew Chem Int Ed. 2020;59(29):11717–31.Miao Q, Pu K. Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv Mater. 2018;30(49):e1801778.Cheng P, Miao Q, Li J, Huang J, Xie C, Pu K. Unimolecular chemo-fluoro-luminescent reporter for crosstalk-free duplex imaging of hepatotoxicity. J Am Chem Soc. 2019;141(27):10581–4.Wei H, Wu G, Tian X, Liu Z. Smart fluorescent probes for in situ imaging of enzyme activity: design strategies and applications. Future Med Chem. 2018;10(23):2729–44.Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang XB, et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev. 2018;47(18):7140–80.Huang J, Li J, Lyu Y, Miao Q, Pu K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat Mater. 2019;18:1133–43.Roth ME, Green O, Gnaim S, Shabat D. Dendritic, oligomeric, and polymeric self-immolative molecular amplification. Chem Rev. 2016;116(3):1309–52.Zhang J, Cheng P, Pu K. Recent advances of molecular optical probes in imaging of β-galactosidase. Bioconjug Chem. 2019;30(8):2089–101.Rotman B. Measurement of activity of single molecules of β-D-galactosidase. Proc Natl Acad Sci U S A. 1961;47(12):1981–91.Rotman B, Zderic JA, Edelstein M. Fluorogenic substrates for beta-D-galactosidases and phosphatases derived from flurescein (3,6-dihydroxyfluoran) and its monomethylether. Proc Natl Acad Sci U S A. 1963;50(1):1–6.Mandal PK, Cattiaux L, Bensimon D, Mallet JM. Monogalactopyranosides of fluorescein and fluorescein methyl ester: synthesis, enzymatic hydrolysis by biotnylated β-galactosidase, and determination of translational diffusion coefficient. Carbohydr Res. 2012;358(40):40–6.Stracean R, Wooda J, Irschmann R. Synthesis and properties of 4-Methyl-2-oxo-1,2-benzopyran-7-yl β-D-galactoside (galactoside of 4-methylumbelliferone). J Org Chem. 1962;27(3):1074–5.Gee KR, Sun WC, Bhalgat KM, Upson RH, Klaubert DH, Latham KA, et al. Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and beta-galactosidases. Anal Biochem. 1999;273(1):41–8.Chilvers KF, Perry JD, James AL, Reed RH. Synthesis and evaluation of novel fluorogenic substrates for the detection of bacterial beta-galactosidase. J Appl Microbiol. 2001;91(6):1118–30.Aizawa K. Studien über Carbohydrasen, I. I. Die fermentative Hydrolyse des p-nitrophenol-β-galactoside. Enzymologia. 1939;6:321–4.Na SY, Kim HJ. Fused oxazolidine-based dual optical probe for galactosidase with a dramatic chromogenic and fluorescence turn-on effect. Dyes Pigments. 2016;134:526–30.Corey PE, Trimmer RW, Biddlecom WG. A new chromogenic β-Galactosidase substrate: 7-β-D-galactopyranosyloxy-9,9-dimethyl-9H-acridin-2-one. Angew Chem Int Ed. 1991;30(12):1646–8.Wang P, Du J, Liu H, Bi G, Zhang G. Small quinolinium-based enzymatic probes via blue-to-red ratiometric fluorescence. Analyst. 2016;141:1483–7.Otsubo T, Minami A, Fujii H, Taguchi R, Takahashi T, Suzuki T, et al. 2-(Benzothiazol-2-yl)-phenyl-β-d-galactopyranoside derivatives as fluorescent pigment dyeing substrates and their application for the assay of β-d-galactosidase activities. Bioorg Med Chem Lett. 2013;23(7):2245–9.Sun C, Zhang X, Tanga M, Liu L, Shi L, Gao C, et al. New optical method for the determination of β-galactosidase and α-fetoprotein based on oxidase-like activity of fluorescein. Talanta. 194:164–70.Hirabayashi K, Hanaoka K, Takayanagi T, Toki Y, Egawa T, Kamiya M, et al. Analysis of chemical equilibrium of silicon-substituted fluorescein and its application to develop a scaffold for red fluorescent probes. Anal Chem. 2015;87(17):9061–9.Horwitz JP, Chua J, Curby RJ, Tomson AJ, Da Rooge MA, Fisher BE, et al. Substrates for cytochemical demonstration of enzyme activity. i. some substituted 3-Indolyl-β-D-glycopyranosides. Med Chem. 1964;7(4):574–5.Ho NH, Weissleder R, Tung CH. A self-immolative reporter for beta-galactosidase sensing. ChemBioChem. 2007;8(5):560–6.Huang Y, Feng H, Liu W, Zhang S, Tang C, Chen J, et al. Cation-driven luminescent self-assembled dots of copper nanoclusters with aggregation-induced emission for β-galactosidase activity monitoring. J Mater Chem B. 2017;5(26):5120–7.Xie X, Liana Y, Xiao L, Weia L. Facile and label-free fluorescence sensing of β-galactosidase activity by graphene quantum dots. Spectrochim Acta A Mol Biomol Spectrosc. 2020;240:118594.Hu Q, Ma K, Mei Y, He M, Kong J, Zhang X. Metal-to-ligand charge-transfer: applications to visual detection of β-galactosidase activity and sandwich immunoassay. Talanta. 2017;167:253–9.Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T. Evolution of fluorescein as a platform for finely tunable fluorescence probes. J Am Chem Soc. 2005;127(13):4888–94.Komatsu T, Kikuchi K, Takakusa H, Hanaoka K, Ueno T, Kamiya M, et al. Design and synthesis of an enzyme activity-based labeling molecule with fluorescence spectral change. J Am Chem Soc. 2006;128(50):15946–7.Koide Y, Urano Y, Yatsushige A, Hanaoka K, Terai T, Nagano T. Design and development of enzymatically activatable photosensitizer based on unique characteristics of thiazole orange. J Am Chem Soc. 2009;131(17):6058–9.Egawa T, Koide Y, Hanaoka K, Komatsu T, Teraiab T, Nagano T. Development of a fluorescein analogue, TokyoMagenta, as a novel scaffold for fluorescence probes in red region. Chem Commun. 2011;47(14):4162–4.Kamiya M, Asanuma D, Kuranaga E, Takeishi A, Sakabe M, Miura M, et al. β-Galactosidase fluorescence probe with improved cellular accumulation based on a spirocyclized rhodol scaffold. J Am Chem Soc. 2011;133(33):12960–3.Han J, Han MS, Tung CH. A fluorogenic probe for β-galactosidase activity imaging in living cells. Mol BioSyst. 2013;9(12):3001–8.Peng L, Gao M, Cai X, Zhang R, Li K, Feng G, et al. A fluorescent light-up probe based on AIE and ESIPT processes for β-galactosidase activity detection and visualization in living cells. J Mater Chem B. 2015;3(47):9168–72.Tseng JC, Kung AL. In vivo imaging of endogenous enzyme activities using luminescent 1,2-dioxetane compounds. J Biomed Sci. 2015;22(1):45.Grimm JB, Gruber TD, Ortiz G, Brown TA, Lavis LD. Virginia Orange: a versatile, red-shifted fluorescein scaffold for single- and dual-input fluorogenic probes. Bioconjug Chem. 2016;27(2):474–80.Wei X, Hu XX, Zhang LL, Li J, Wang J. et al. Highly selective and sensitive FRET based ratiometric two-photon fluorescent probe for endogenous β-galactosidase detection in living cells and tissues Microchem. J. 2020;157:105046.Calatrava-Pérez E, Bright SA, Achermann S, Moylan C, Senge MO, Veale EB, et al. Glycosidase activated release of fluorescent 1,8-naphthalimide probes for tumor cell imaging from glycosylated pro-probes. Chem Commun. 2016;52(89):13086–9.Jiang G, Zeng G, Zhu W, Li Y, Dong X, Zhang G, et al. A selective and light-up fluorescent probe for β-galactosidase activity detection and imaging in living cells based on an AIE tetraphenylethylene derivative. Chem Commun. 2017;53(32):4505–8.Yang W, Zhao X, Zhang Y, Zhou Y, Fan S, Sheng H, et al. Hydroxyphenylquinazolinone-based turn-on fluorescent probe for β-galactosidase activity detection and application in living cells. Dyes Pigments. 2018;156:100–7.Li Y, Ning L, Yuan F, Zhang F, Zhang J, Xu Z, et al. Activatable formation of emissive excimers for highly selective detection of β-galactosidase. Anal Chem. 2020;92(8):5733–40.Huang J, Li N, Wang Q, Gu Y, Wang P. A lysosome-targetable and two-photon fluorescent probe for imaging endogenous β-galactosidase in living ovarian cancer cells. Sensor Actuat B-Chem. 2017;246:833–9.Chen X, Zhang X, Ma X, Zhang Y, Gao G, Liu J, et al. Novel fluorescent probe for rapid and ratiometric detection of β-galactosidase and live cell imaging. Talanta. 2019;192:308–13.Fu W, Yan C, Zhang Y, Ma Y, Guo Z, Zhu WH. Near-infrared aggregation-induced emission-active probe enables in situ and long-term tracking of endogenous β-galactosidase activity. Front Chem. 2019;7:291–302.Zhang X, Chen X, Zhang Y, Liu K, Shen H, et al. A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase. Anal Bioanal Chem. 2019;411:7957–66.Chen M, Mu L, Cao X, She G, Shi W. A novel ratiometric fluorescent probe for highly sensitive and selective detection of β-galactosidase in living cells. Chin J Chem. 2019;37(4):330–6.Kong X, Li M, Dong B, Yin Y, Song W, Lin W. An ultrasensitivity fluorescent probe based on the ict-fret dual mechanisms for imaging β-galactosidase in vitro and ex vivo. Anal Chem. 2019;91(24):15591–8.Lee HW, Lim CS, Choi H, Cho MK, Noh CH, Lee K, et al. Discrimination between human colorectal neoplasms with a dual-recognitive two-photon probe. Anal Chem. 2019;91(22):14705–11.Zhao X, Yang W, Fan S, Zhou Y, Sheng H, Cao Y, et al. A hemicyanine-based colorimetric turn-on fluorescent probe for β-galactosidase activity detection and application in living cells. J Lumin. 2019;205:310–7.Li X, Pan Y, Chen H, Duan Y, Zhou S, Wu W, et al. Specific near-infrared probe for ultrafast imaging of lysosomal β-galactosidase in ovarian cancer cells. Anal Chem. 2020;92(8):5772–9.Long R, Tang C, Yang Z, Fu Q, Xu J, Tong C, et al. A natural hyperoside based novel light-up fluorescent probe with AIE and ESIPT characteristics for on-site and long-term imaging of β-galactosidase in living cells. J Mater Chem C. 2020;8(34):11860–5.Tang C, Zhou J, Qian Z, Ma Y, Huang Y, Feng H. A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: β-galactosidase activity detection in vitro and in living cells. J Mater Chem B. 2017;5(10):1971–9.Wang W, Vellaisamy K, Li W, Wu C, Ko CN, Leung CL, et al. Development of a long-lived luminescence probe for visualizing β-galactosidase in ovarian carcinoma cells. Anal Chem. 2017;89(21):11679–84.James AL, Perry JD, Ford M, Armstrong L, Gould FK. Evaluation of cyclohexenoesculetin-beta-D-galactoside and 8-hydroxyquinoline-beta-D-galactoside as substrates for the detection of beta-galactosidase. Appl Environ Microbiol. 1996;62(10):3868–70.James AL, Perry JD, Chilvers K, Robson IS, Armstrong L, Orr KE. Alizarin-beta-D-galactoside: a new substrate for the detection of bacterial beta-galactosidase. Lett Appl Microbiol. 2000;30(4):336–40.Wei X, Wu Q, Zhang J, Zhang Y, Guo W, Chen M, et al. Synthesis of precipitating chromogenic/fluorogenic β-glucosidase/β-galactosidase substrates by a new method and their application in the visual detection of foodborne pathogenic bacteria. Chem Commun. 2017;53(1):103–6.Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482–96.Filho MS, Dao P, Gesson M, Martin AR, Benhida R. Development of highly sensitive fluorescent probes for the detection of β-galactosidase activity- application to the real-time monitoring of senescence in live cells. Analyst. 2018;143(11):2680–8.Kim EJ, Podder A, Maiti M, Lee JM, Chung BG, Bhuniya S. Selective monitoring of vascular cell senescence via β-Galactosidase detection with a fluorescent chemosensor. Sensor Actuat B-Chem. 2018;274:194–200.Jiang J, Tan Q, Zhao S, Song H, Hua L, Xie H. Late-stage difluoromethylation leading to a self-immobilizing fluorogenic probe for the visualization of enzyme activities in live cells. Chem Commun. 2019;55(99):15000–3.Qiu W, Li X, Shi D, Li X, Gao Y, Li J, et al. A rapid-response near-infrared fluorescent probe with large Stokes shift for senescence-associated β-galactosidase activity detection and imaging of senescent cells. Dyes Pigments. 2020;182(99):108657.Makau JN, Kitagawa A, Kitamura K, Yamaguchi T, Mizuta S. Design and development of an HBT-based ratiometric fluorescent probe to monitor stress-induced premature senescence. ACS Omega. 2020;5:11299–307.Senter PD, Saulnier MG, Schreiber GJ, Hirschberg DL, Brown JP, Hellström I, et al. Antitumor effect of antibody-alkaline phosphatase conjugates in combination with etoposide phosphate. Proc Natl Acad Sci U S A. 1988;85(13):4842–6.Senter PD, Springer CJ. Selective activation of anticancer prodrugs by monoclonal antibody-enzyme conjugates. Adv Drug Deliv Rev. 2001;53(3):247–64.Gu K, Xu Y, Li H, Guo Z, Zhu S, Shi P, et al. Real-time tracking and in vivo visualization of β-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. J Am Chem Soc. 2016;138(16):5334–40.Tung CH, Zeng Q, Shah K, Kim DE, Schellingerhout D, Weissleder R. In vivo imaging of beta-galactosidase activity using far red fluorescent switch. Cancer Res. 2004;64(5):1579–83.Wehrman TS, von Degenfeld G, Krutzik PO, Nolan GP, Blau HM. Luminescent imaging of beta-galactosidase activity in living subjects using sequential reporter-enzyme luminescence. Nat Methods. 2006;3(4):295–301.Oushiki D, Kojima H, Takahashi Y, Komatsu T, Terai T, Hanaoka K, et al. Near-infrared fluorescence probes for enzymes based on binding affinity modulation of squarylium dye scaffold. Anal Chem. 2012;84(10):4404–10.Zhang XX, Wu H, Li P, Qu ZJ, Tan MQ, Han KL. A versatile two-photon fluorescent probe for ratiometric imaging E. coliβ-galactosidase in live cells and in vivo. Chem Commun. 2016;52(53):8283–6.Kim EJ, Kumar R, Sharma A, Yoon B, Kim HM, Lee H, et al. In vivo imaging of β-galactosidase stimulated activity in hepatocellular carcinoma using ligand-targeted fluorescent probe. Biomaterials. 2017;122:83–90.Shi L, Yan C, Ma Y, Wang T, Guo Z, Zhu WH. In vivo ratiometric tracking of endogenous β-galactosidase activity using an activatable near-infrared fluorescent probe. Chem Commun. 2019;55(82):12308–11.Zhen X, Zhang J, Huang J, Xie C, Miao Q, Pu K. Macrotheranostic probe with disease-activated near-infrared fluorescence, photoacoustic, and photothermal signals for imaging-guided therapy. Angew Chem Int Ed. 2018;57(26):7804–8.Li Z, Ren M, Wang L, Dai L, Lin W. Development of a red-emissive two-photon fluorescent probe for sensitive detection of beta-galactosidase in vitro and in vivo. Sensor Actuat B-Chem. 2020;307:127643.González-Gualda E, Pàez-Ribes M, Lozano-Torres B, Macias D, Wilson JR 3rd, González-López C, et al. Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell. 2020;19(4):e13142.Lozano-Torres B, Galiana I, Rovira M, Garrido E, Chaib S, Bernardos A, et al. An OFF–ON two-photon fluorescent probe for tracking cell senescence in vivo. J Am Chem Soc. 2017;139(26):8808–11.Lozano-Torres B, Blandez JF, Galiana I, García-Fernández A, Alfonso M, Marcos MD, et al. Real-time in vivo detection of cellular senescence through the controlled release of the NIR fluorescent dye Nile blue. Angew Chem Int Ed. 2020;59(35):5152–6.Wang Y, Liu J, Ma X, Cui C, Deenik PR, Henderson KP, et al. Real-time imaging of senescence in tumors with DNA damage. Sci Rep. 2019;9:2102.Chen JA, Guo W, Wang Z, Sun N, Pan H, Tan J, et al. In vivo imaging of senescent vascular cells in atherosclerotic mice using a β-galactosidase-activatable nanoprobe. Anal Chem. 2020;92(18):12613–21.Liu J, Ma X, Cui C, Wang Y, Deenik PR, Cui L. A self-immobilizing NIR probe for non-invasive imaging of senescence. bioRxiv. 2020. https://doi.org/10.1101/2020.03.27.010827.Aznar E, Oroval M, Pascual L, Murguía JR, Martínez-Máñez R, Sancenón F. Gated materials for on-command release of guest molecules. Chem Rev. 2016;116(2):561–718.García-Fernández A, Aznar E, Martínez-Máñez R, Sancenón F. New advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers. Small. 2020;16(3):1902242–304.Coll C, Bernardos A, Martínez-Máñez R, Sancenón F. Gated silica mesoporous supports for controlled release and signaling applications. Acc Chem Res. 2013;46(2):339–49.Muñoz-Espín D, Rovira M, Galiana I, Giménez C, Lozano-Torres B, Paez-Ribes M. A versatile drug delivery system targeting senescent cells. EMBO Mol Med. 2018;10(9):e9355.Lozano-Torres B, Estepa-Fernández A, Rovira M, Orzáez M, Serrano M, Martínez-Máñez R, et al. The chemistry of senescence. Nat Rev Chem. 2019;3:426–41.Mazur A, Kro’l JE, Marczak M, Skorupska A. Membrane topology of PssT, the transmembrane protein component of the type I exopolysaccharide transport system in rhizobium leguminosarum bv trifolii strain TA1. J Bacteriol. 2003;85(8):2503–11.Agostini A, Mondragón L, Bernardos A, Martínez-Máñez R, Marcos MD, Sancenón F, et al. Targeted cargo delivery in senescent cells using capped mesoporous silica nanoparticles. Angew Chem Int Ed. 2012;51(42):10556–60.Asanuma D, Sakabe M, Kamiya M, Yamamoto K, Hiratake J, Ogawa M, et al. Sensitive β-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo. Nat Commun. 2015;6:6463.Sakabe M, Asanuma D, Kamiya M, Iwatate RI, Hanaoka K, Terai T, et al. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. J Am Chem Soc. 2013;135(1):409–14.Doura T, Kamiya M, Obata F, Yamaguchi Y, Hiyama TY, Matsuda T, et al. Detection of LacZ-positive cells in living tissue with single-cell resolution. Angew Chem Int Ed. 2016;55(33):9620–4.Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009;361:2353–65.Chatterjee SK, Bhattacharya M, Barlow JJ. Glycosyltransferase and glycosidase activities in ovarian cancer

    Fluorogenic Detection of Human Serum Albumin Using Curcumin-Capped Mesoporous Silica Nanoparticles

    Full text link
    [EN] Mesoporous silica nanoparticles loaded with rhodamine B and capped with curcumin are used for the selective and sensitive fluorogenic detection of human serum albumin (HSA). The sensing mesoporous silica nanoparticles are loaded with rhodamine B, decorated with aminopropyl moieties and capped with curcumin. The nanoparticles selectively release the rhodamine B cargo in the presence of HSA. A limit of detection for HSA of 0.1 mg/mL in PBS (pH 7.4)-acetonitrile 95:5 v/v was found, and the sensing nanoparticles were used to detect HSA in spiked synthetic urine samples.This research was funded by the Spanish Government (RTI2018-100910-B-C41 (MCUI/FEDER, EU)) and the Generalitat Valenciana (PROMETEO 2018/024). I.O. was funded by Erasmus Mundus Programme, Action 2, Lot 1, Syria (predoctoral fellowship). S.M. was funded by Generalitat Valenciana (Santiago Grisolia fellowship).Otri, I.; Medaglia, S.; Aznar, E.; Sancenón Galarza, F.; Martínez-Máñez, R. (2022). Fluorogenic Detection of Human Serum Albumin Using Curcumin-Capped Mesoporous Silica Nanoparticles. Molecules. 27(3):1-9. https://doi.org/10.3390/molecules270311331927

    Mimicking tricks from nature with sensory organic-inorganic hybrid materials

    Full text link
    Design strategies for (bio)chemical systems that are inspired by nature's accomplishments in system design and operation on various levels of complexity are increasingly gaining in importance. Within the broad field of biomimetic chemistry, this article highlights various attempts toward improved and sophisticated sensory materials that rely on the combination of supramolecular (bio)chemical recognition principles and nanoscopic solid structures. Examples range from more established concepts such as hybrid sensing ensembles with improved sensitivity and selectivity or for target analytes for which selectivity is hard to achieve by conventional methods, which were often inspired by protein binding pockets or ion channels in membranes, to very recent approaches relying on target-gated amplified signalling with functionalised mesoporous inorganic supports and the integration of native biological sensory species such as transmembrane proteins in spherically supported bilayer membranes. Besides obvious mimicry of recognition-based processes, selected approaches toward chemical transduction junctions utilizing artificially organized synapses, hybrid ensembles for improved antibody generation and uniquely colour changing systems are discussed. All of these strategies open up exciting new prospects for the development of sensing concepts and sensory devices at the interface of nanotechnology, smart materials and supramolecular (bio)chemistry. © 2011 The Royal Society of Chemistry.Martínez Mañez, R.; Sancenón Galarza, F.; Biyikal, M.; Hecht, M.; Rurack, K. (2011). Mimicking tricks from nature with sensory organic-inorganic hybrid materials. Journal of Materials Chemistry. 21(34):12588-12604. doi:10.1039/c1jm11210dS12588126042134Ma, M. (2007). Encoding Olfactory Signals via Multiple Chemosensory Systems. Critical Reviews in Biochemistry and Molecular Biology, 42(6), 463-480. doi:10.1080/10409230701693359Leinders-Zufall, T., Lane, A. P., Puche, A. C., Ma, W., Novotny, M. V., Shipley, M. T., & Zufall, F. (2000). Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature, 405(6788), 792-796. doi:10.1038/35015572Serezani, C. H., Ballinger, M. N., Aronoff, D. M., & Peters-Golden, M. (2008). Cyclic AMP. American Journal of Respiratory Cell and Molecular Biology, 39(2), 127-132. doi:10.1165/rcmb.2008-0091trShimada, T. (2006). Xenobiotic-Metabolizing Enzymes Involved in Activation and Detoxification of Carcinogenic Polycyclic Aromatic Hydrocarbons. Drug Metabolism and Pharmacokinetics, 21(4), 257-276. doi:10.2133/dmpk.21.257Duncan, M. C., Ho, D. G., Huang, J., Jung, M. E., & Payne, G. S. (2007). Composite synthetic lethal identification of membrane traffic inhibitors. Proceedings of the National Academy of Sciences, 104(15), 6235-6240. doi:10.1073/pnas.0607773104Helmreich, E. J. M. (2002). Environmental influences on signal transduction through membranes: a retrospective mini-review. Biophysical Chemistry, 100(1-3), 519-534. doi:10.1016/s0301-4622(02)00303-4Anslyn, E. V. (2007). Supramolecular Analytical Chemistry. The Journal of Organic Chemistry, 72(3), 687-699. doi:10.1021/jo0617971Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734Martínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2Koshland, D. E. (1958). Application of a Theory of Enzyme Specificity to Protein Synthesis. Proceedings of the National Academy of Sciences, 44(2), 98-104. doi:10.1073/pnas.44.2.98Hammes, G. G. (2002). Multiple Conformational Changes in Enzyme Catalysis†. Biochemistry, 41(26), 8221-8228. doi:10.1021/bi0260839Lin, V. S.-Y., Lai, C.-Y., Huang, J., Song, S.-A., & Xu, S. (2001). Molecular Recognition Inside of Multifunctionalized Mesoporous Silicas:  Toward Selective Fluorescence Detection of Dopamine and Glucosamine. Journal of the American Chemical Society, 123(46), 11510-11511. doi:10.1021/ja016223mRadu, D. R., Lai, C.-Y., Wiench, J. W., Pruski, M., & Lin, V. S.-Y. (2004). Gatekeeping Layer Effect:  A Poly(lactic acid)-coated Mesoporous Silica Nanosphere-Based Fluorescence Probe for Detection of Amino-Containing Neurotransmitters. Journal of the American Chemical Society, 126(6), 1640-1641. doi:10.1021/ja038222vDescalzo, A. B., Rurack, K., Weisshoff, H., Martínez-Máñez, R., Marcos, M. D., Amorós, P., … Soto, J. (2005). Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates. Journal of the American Chemical Society, 127(1), 184-200. doi:10.1021/ja045683nComes, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Villaescusa, L. A., … Beltrán, D. (2004). Chromogenic Discrimination of Primary Aliphatic Amines in Water with Functionalized Mesoporous Silica. Advanced Materials, 16(20), 1783-1786. doi:10.1002/adma.200400143(s. f.). doi:10.1021/ol052298García-Acosta, B., Comes, M., Bricks, J. L., Kudinova, M. A., Kurdyukov, V. V., Tolmachev, A. I., … Amorós, P. (2006). Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines. Chem. Commun., (21), 2239-2241. doi:10.1039/b602497aComes, M., Marcos, M. D., Martínez-Máñez, R., Millán, M. C., Ros-Lis, J. V., Sancenón, F., … Villaescusa, L. A. (2006). Anchoring Dyes into Multidimensional Large-Pore Zeolites: A Prospective Use as Chromogenic Sensing Materials. Chemistry - A European Journal, 12(8), 2162-2170. doi:10.1002/chem.200500932Comes, M., Rodríguez-López, G., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Beltrán, D. (2005). Host Solids Containing Nanoscale Anion-Binding Pockets and Their Use in Selective Sensing Displacement Assays. Angewandte Chemie International Edition, 44(19), 2918-2922. doi:10.1002/anie.200461511Comes, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Villaescusa, L. A., & Amorós, P. (2008). Hybrid materials with nanoscopic anion-binding pockets for the colorimetric sensing of phosphate in water using displacement assays. Chemical Communications, (31), 3639. doi:10.1039/b804396eComes, M., Aznar, E., Moragues, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2009). Mesoporous Hybrid Materials Containing Nanoscopic «Binding Pockets» for Colorimetric Anion Signaling in Water by using Displacement Assays. Chemistry - A European Journal, 15(36), 9024-9033. doi:10.1002/chem.200900890Vašák, M. (2005). Advances in metallothionein structure and functions. Journal of Trace Elements in Medicine and Biology, 19(1), 13-17. doi:10.1016/j.jtemb.2005.03.003Slocik, J. M., & Wright, D. W. (2003). Biomimetic Mineralization of Noble Metal Nanoclusters. Biomacromolecules, 4(5), 1135-1141. doi:10.1021/bm034003qLee, J.-W., & Helmann, J. D. (2007). Functional specialization within the Fur family of metalloregulators. BioMetals, 20(3-4), 485-499. doi:10.1007/s10534-006-9070-7Lee, M. H., Lee, S. J., Jung, J. H., Lim, H., & Kim, J. S. (2007). Luminophore-immobilized mesoporous silica for selective Hg2+ sensing. Tetrahedron, 63(48), 12087-12092. doi:10.1016/j.tet.2007.08.113Song, C., Zhang, X., Jia, C., Zhou, P., Quan, X., & Duan, C. (2010). Highly sensitive and selective fluorescence sensor based on functional SBA-15 for detection of Hg2+ in Aqueous Media. Talanta, 81(1-2), 643-649. doi:10.1016/j.talanta.2009.12.047Métivier, R., Leray, I., Lebeau, B., & Valeur, B. (2005). A mesoporous silica functionalized by a covalently bound calixarene-based fluoroionophore for selective optical sensing of mercury(ii) in water. Journal of Materials Chemistry, 15(27-28), 2965. doi:10.1039/b501897hLee, S. J., Lee, J.-E., Seo, J., Jeong, I. Y., Lee, S. S., & Jung, J. H. (2007). Optical Sensor Based on Nanomaterial for the Selective Detection of Toxic Metal Ions. Advanced Functional Materials, 17(17), 3441-3446. doi:10.1002/adfm.200601202Palomares, E., Vilar, R., & Durrant, J. R. (2004). Heterogeneous colorimetric sensor for mercuric saltsElectronic supplementary information (ESI) available: Materials and methods. See http://www.rsc.org/suppdata/cc/b3/b314138a/. Chemical Communications, (4), 362. doi:10.1039/b314138aWang, Y., Li, B., Zhang, L., Liu, L., Zuo, Q., & Li, P. (2010). A highly selective regenerable optical sensor for detection of mercury(ii) ion in water using organic–inorganic hybrid nanomaterials containing pyrene. New Journal of Chemistry, 34(9), 1946. doi:10.1039/c0nj00039fLi, L.-L., Sun, H., Fang, C.-J., Xu, J., Jin, J.-Y., & Yan, C.-H. (2007). Optical sensors based on functionalized mesoporous silica SBA-15 for the detection of multianalytes (H+ and Cu2+) in water. Journal of Materials Chemistry, 17(42), 4492. doi:10.1039/b708857dZhang, H., Zhang, P., Ye, K., Sun, Y., Jiang, S., Wang, Y., & Pang, W. (2006). Mesoporous material grafted with luminescent molecules for the design of selective metal ion chemosensor. Journal of Luminescence, 117(1), 68-74. doi:10.1016/j.jlumin.2005.04.009Gao, L., Wang, J. Q., Huang, L., Fan, X. X., Zhu, J. H., Wang, Y., & Zou, Z. G. (2007). Novel Inorganic−Organic Hybrid Fluorescence Chemosensor Derived from SBA-15 for Copper Cation. Inorganic Chemistry, 46(24), 10287-10293. doi:10.1021/ic7008732Wang, J.-Q., Huang, L., Xue, M., Wang, Y., Gao, L., Zhu, J. H., & Zou, Z. (2008). Architecture of a Hybrid Mesoporous Chemosensor for Fe3+ by Covalent Coupling Bis-Schiff Base PMBA onto the CPTES-Functionalized SBA-15. The Journal of Physical Chemistry C, 112(13), 5014-5022. doi:10.1021/jp7099948Gao, L., Wang, Y., Wang, J., Huang, L., Shi, L., Fan, X., … Li, Z. (2006). A Novel ZnII-Sensitive Fluorescent Chemosensor Assembled within Aminopropyl-Functionalized Mesoporous SBA-15. Inorganic Chemistry, 45(17), 6844-6850. doi:10.1021/ic0516562Balaji, T., Sasidharan, M., & Matsunaga, H. (2005). Naked eye detection of cadmium using inorganic–organic hybrid mesoporous material. Analytical and Bioanalytical Chemistry, 384(2), 488-494. doi:10.1007/s00216-005-0187-2Balaji, T., El-Safty, S. A., Matsunaga, H., Hanaoka, T., & Mizukami, F. (2006). Optical Sensors Based on Nanostructured Cage Materials for the Detection of Toxic Metal Ions. Angewandte Chemie International Edition, 45(43), 7202-7208. doi:10.1002/anie.200602453El-Safty, S. A., Ismail, A. A., Matsunaga, H., & Mizukami, F. (2007). Optical Nanosensor Design with Uniform Pore Geometry and Large Particle Morphology. Chemistry - A European Journal, 13(33), 9245-9255. doi:10.1002/chem.200700499El-Safty, S. A., Ismail, A. A., Matsunaga, H., Hanaoka, T., & Mizukami, F. (2008). Optical Nanoscale Pool-on-Surface Design for Control Sensing Recognition of Multiple Cations. Advanced Functional Materials, 18(10), 1485-1500. doi:10.1002/adfm.200701059Ros-Lis, J. V., Casasús, R., Comes, M., Coll, C., Marcos, M. D., Martínez-Máñez, R., … Rurack, K. (2008). A Mesoporous 3D Hybrid Material with Dual Functionality for Hg2+Detection and Adsorption. Chemistry - A European Journal, 14(27), 8267-8278. doi:10.1002/chem.200800632Lee, S. J., Bae, D. R., Han, W. S., Lee, S. S., & Jung, J. H. (2008). Different Morphological Organic–Inorganic Hybrid Nanomaterials as Fluorescent Chemosensors and Adsorbents for CuII Ions. European Journal of Inorganic Chemistry, 2008(10), 1559-1564. doi:10.1002/ejic.200701073Lee, H. Y., Bae, D. R., Park, J. C., Song, H., Han, W. S., & Jung, J. H. (2009). A Selective Fluoroionophore Based on BODIPY-functionalized Magnetic Silica Nanoparticles: Removal of Pb2+ from Human Blood. Angewandte Chemie International Edition, 48(7), 1239-1243. doi:10.1002/anie.200804714Haupt, K., & Mosbach, K. (2000). Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chemical Reviews, 100(7), 2495-2504. doi:10.1021/cr990099wWulff, G. (2002). Enzyme-like Catalysis by Molecularly Imprinted Polymers. Chemical Reviews, 102(1), 1-28. doi:10.1021/cr980039aSellergren, B. (1997). Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials. TrAC Trends in Analytical Chemistry, 16(6), 310-320. doi:10.1016/s0165-9936(97)00027-7D�az-Garc�a, M. E., & La�n�o, R. B. (2004). Molecular Imprinting in Sol-Gel Materials: Recent Developments and Applications. Microchimica Acta, 149(1-2), 19-36. doi:10.1007/s00604-004-0274-7Bossi, A., Bonini, F., Turner, A. P. F., & Piletsky, S. A. (2007). Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosensors and Bioelectronics, 22(6), 1131-1137. doi:10.1016/j.bios.2006.06.023Nicholls, I. A., & Rosengren, J. P. (2001). Bioseparation, 10(6), 301-305. doi:10.1023/a:1021541631063Chang, Y.-S., Ko, T.-H., Hsu, T.-J., & Syu, M.-J. (2009). Synthesis of an Imprinted Hybrid Organic−Inorganic Polymeric Sol−Gel Matrix Toward the Specific Binding and Isotherm Kinetics Investigation of Creatinine. Analytical Chemistry, 81(6), 2098-2105. doi:10.1021/ac802168wBass, J. D., & Katz, A. (2003). Thermolytic Synthesis of Imprinted Amines in Bulk Silica. Chemistry of Materials, 15(14), 2757-2763. doi:10.1021/cm021822tCarlson, C. A., Lloyd, J. A., Dean, S. L., Walker, N. R., & Edmiston, P. L. (2006). Sensor for Fluorene Based on the Incorporation of an Environmentally Sensitive Fluorophore Proximal to a Molecularly Imprinted Binding Site. Analytical Chemistry, 78(11), 3537-3542. doi:10.1021/ac051375bShughart, E. L., Ahsan, K., Detty, M. R., & Bright, F. V. (2006). Site Selectively Templated and Tagged Xerogels for Chemical Sensors. Analytical Chemistry, 78(9), 3165-3170. doi:10.1021/ac060113mTrammell, S. A., Zeinali, M., Melde, B. J., Charles, P. T., Velez, F. L., Dinderman, M. A., … Markowitz, M. A. (2008). Nanoporous Organosilicas as Preconcentration Materials for the Electrochemical Detection of Trinitrotoluene. Analytical Chemistry, 80(12), 4627-4633. doi:10.1021/ac702263tMakote, R., & Collinson, M. M. (1998). Template Recognition in Inorganic−Organic Hybrid Films Prepared by the Sol−Gel Process. Chemistry of Materials, 10(9), 2440-2445. doi:10.1021/cm9801136Makote, R., & Collinson, M. M. (1998). Dopamine recognition in templated silicate films. Chemical Communications, (3), 425-426. doi:10.1039/a705536fFireman-Shoresh, S., Avnir, D., & Marx, S. (2003). General Method for Chiral Imprinting of Sol−Gel Thin Films Exhibiting Enantioselectivity. Chemistry of Materials, 15(19), 3607-3613. doi:10.1021/cm0340734Marx, S., Zaltsman, A., Turyan, I., & Mandler, D. (2004). Parathion Sensor Based on Molecularly Imprinted Sol−Gel Films. Analytical Chemistry, 76(1), 120-126. doi:10.1021/ac034531sTurner, N. W., Jeans, C. W., Brain, K. R., Allender, C. J., Hlady, V., & Britt, D. W. (2006). From 3D to 2D: A Review of the Molecular Imprinting of Proteins. Biotechnology Progress, 22(6), 1474-1489. doi:10.1002/bp060122gXie, C., Liu, B., Wang, Z., Gao, D., Guan, G., & Zhang, Z. (2008). Molecular Imprinting at Walls of Silica Nanotubes for TNT Recognition. Analytical Chemistry, 80(2), 437-443. doi:10.1021/ac701767hTan, J., Wang, H.-F., & Yan, X.-P. (2009). Discrimination of Saccharides with a Fluorescent Molecular Imprinting Sensor Array Based on Phenylboronic Acid Functionalized Mesoporous Silica. Analytical Chemistry, 81(13), 5273-5280. doi:10.1021/ac900484xWang, H.-F., He, Y., Ji, T.-R., & Yan, X.-P. (2009). Surface Molecular Imprinting on Mn-Doped ZnS Quantum Dots for Room-Temperature Phosphorescence Optosensing of Pentachlorophenol in Water. Analytical Chemistry, 81(4), 1615-1621. doi:10.1021/ac802375aJentsch, T. J., Stein, V., Weinreich, F., & Zdebik, A. A. (2002). Molecular Structure and Physiological Function of Chloride Channels. Physiological Reviews, 82(2), 503-568. doi:10.1152/physrev.00029.2001Morbach, S., & Krämer, R. (2002). Body Shaping under Water Stress: Osmosensing and Osmoregulation of Solute Transport in Bacteria. ChemBioChem, 3(5), 384. doi:10.1002/1439-7633(20020503)3:53.0.co;2-hWemmie, J. A., Price, M. P., & Welsh, M. J. (2006). Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends in Neurosciences, 29(10), 578-586. doi:10.1016/j.tins.2006.06.014Bayley, H., & Martin, C. R. (2000). Resistive-Pulse SensingFrom Microbes to Molecules. Chemical Reviews, 100(7), 2575-2594. doi:10.1021/cr980099gJung, Y., Bayley, H., & Movileanu, L. (2006). Temperature-Responsive Protein Pores. Journal of the American Chemical Society, 128(47), 15332-15340. doi:10.1021/ja065827tJenkins, A. T. A., Boden, N., Bushby, R. J., Evans, S. D., Knowles, P. F., Miles, R. E., … Vancso, G. J. (1999). Microcontact Printing of Lipophilic Self-Assembled Monolayers for the Attachment of Biomimetic Lipid Bilayers to Surfaces. Journal of the American Chemical Society, 121(22), 5274-5280. doi:10.1021/ja983968sRose, L., & Jenkins, A. T. A. (2007). The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes. Bioelectrochemistry, 70(2), 387-393. doi:10.1016/j.bioelechem.2006.05.009Tsukube, H., Takagi, K., Higashiyama, T., Iwachido, T., & Hayama, N. (1994). Biomimetic Membrane Transport: Interesting Ionophore Functions of Naturally Occurring Polyether Antibiotics toward Unusual Metal Cations and Amino Acid Ester Salts. Inorganic Chemistry, 33(13), 2984-2987. doi:10.1021/ic00091a043Murillo, O., Suzuki, I., Abel, E., Murray, C. L., Meadows, E. S., Jin, T., & Gokel, G. W. (1997). Synthetic Transmembrane Channels:  Functional Characterization Using Solubility Calculations, Transport Studies, and Substituent Effects. Journal of the American Chemical Society, 119(24), 5540-5549. doi:10.1021/ja962694aSakai, N., Brennan, K. C., Weiss, L. A., & Matile, S. (1997). Toward Biomimetic Ion Channels Formed by Rigid-Rod Molecules:  Length-Dependent Ion-Transport Activity of Substituted Oligo(p-Phenylene)s. Journal of the American Chemical Society, 119(37), 8726-8727. doi:10.1021/ja971513hRoks, M. F. M., & Nolte, R. J. M. (1992). Biomimetic macromolecular chemistry: design and synthesis of an artificial ion channel based on a polymer containing cofacially stacked crown ether rings. Incorporation in dihexadecyl phosphate vesicles and study of cobalt ion transport. Macromolecules, 25(20), 5398-5407. doi:10.1021/ma00046a042Finn, J. T., Grunwald, M. E., & Yau, K.-W. (1996). Cyclic Nucleotide-Gated Ion Channels: An Extended Family With Diverse Functions. Annual Review of Physiology, 58(1), 395-426. doi:10.1146/annurev.ph.58.030196.002143Levitan, I. B. (2006). Signaling protein complexes associated with neuronal ion channels. Nature Neuroscience, 9(3), 305-310. doi:10.1038/nn1647Goldenberg, L. M., Bryce, M. R., & Petty, M. C. (1999). Chemosensor devices: voltammetric molecular recognition at solid interfaces. Journal of Materials Chemistry, 9(9), 1957-1974. doi:10.1039/a901825eBühlmann, P., Aoki, H., Xiao, K. P., Amemiya, S., Tohda, K., & Umezawa, Y. (1998). Chemical Sensing with Chemically Modified Electrodes that Mimic Gating at Biomembranes Incorporating Ion-Channel Receptors. Electroanalysis, 10(17), 1149-1158. doi:10.1002/(sici)1521-4109(199811)10:173.0.co;2-nSugawara, M., Hirano, A., Bühlmann, P., & Umezawa, Y. (2002). Design and Application of Ion-Channel Sensors Based on Biological and Artificial Receptors. Bulletin of the Chemical Society of Japan, 75(2), 187-201. doi:10.1246/bcsj.75.187Gadzekpo, V. P. Y., Xiao, K. P., Aoki, H., Bühlmann, P., & Umezawa, Y. (1999). Voltammetric Detection of the Polycation Protamine by the Use of Electrodes Modified with Self-Assembled Monolayers of Thioctic Acid. Analytical Chemistry, 71(22), 5109-5115. doi:10.1021/ac990580mGadzekpo, V. P. Y., Bühlmann, P., Xiao, K. P., Aoki, H., & Umezawa, Y. (2000). Development of an ion-channel sensor for heparin detection. Analytica Chimica Acta, 411(1-2), 163-173. doi:10.1016/s0003-2670(00)00740-6Bandyopadhyay, K., Liu, H., Liu, S.-G., & Echegoyen, L. (2000). Self-assembled monolayers of bis-thioctic ester derivatives of oligoethyleneglycols: remarkable selectivity for K+/Na+ recognition. Chemical Communications, (2), 141-142. doi:10.1039/a905839gFlink, S., Schönherr, H., Vancso, G. J., Geurts, F. A. J., van Leerdam, K. G. C., van Veggel, F. C. J. M., & Reinhoudt, D. N. (2000). Cation sensing by patterned self-assembled monolayers on gold. Journal of the Chemical Society, Perkin Transactions 2, (10), 2141-2146. doi:10.1039/b002606iAOKI, H., UMEZAWA, Y., VERTOVA, A., & RONDININI, S. (2006). Ion-channel Sensors Based on ETH 1001 Ionophore Embedded in Charged-alkanethiol Self-assembled Monolayers on Gold Electrode Surfaces. Analytical Sciences, 22(12), 1581-1584. doi:10.2116/analsci.22.1581Aoki, H., Hasegawa, K., Tohda, K., & Umezawa, Y. (2003). Voltammetric detection of inorganic phosphate using ion-channel sensing with self-assembled monolayers of a hydrogen bond-forming receptor. Biosensors and Bioelectronics, 18(2-3), 261-267. doi:10.1016/s0956-5663(02)00177-xAoki, H., & Umezawa, Y. (2003). Trace analysis of an oligonucleotide with a specific sequence using PNA-based ion-channel sensors. The Analyst, 128(6), 681. doi:10.1039/b300465aKatayama, Y., Ohuchi, Y., Higashi, H., Kudo, Y., & Maeda, M. (2000). The Design of Cyclic AMP−Recognizing Oligopeptides and Evaluation of Its Capability for Cyclic AMP Recognition Using an Electrochemical System. Analytical Chemistry, 72(19), 4671-4674. doi:10.1021/ac990847hCliment, E., Casasús, R., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2008). Chromo-fluorogenic sensing of pyrophosphate in aqueous media using silica functionalised with binding and reactive units. Chemical Communications, (48), 6531. doi:10.1039/b813199fCliment, E., Calero, P., Marcos, M. D., Martínez-Máñez, R.

    Colorimetric detection of normetanephrine, a pheochromocytoma biomarker, using bifunctionalised gold nanoparticles

    Full text link
    [EN] A simple and effective colorimetric method for the detection of normetanephrine (NMN), an O-methylated metabolite of norepinephrine, using functionalised gold nanoparticles is described. This metabolite is an important biomarker in the diagnosis of adrenal tumours such as pheocromocytoma or paraganglioma. The colorimetric probe consists of spherical gold nanoparticles (AuNPs) functionalised with two different ligands, which specifically recognize different functional groups in normetanephrine. Thus, a benzaldehyde-terminated ligand was used for the recognition of the amino alcohol moiety in NMN, by forming the corresponding oxazolidine. On the other hand, N-acetyl-cysteine was chosen for the recognition of the phenolic hydroxyl group through the formation of hydrogen bonds. The selective double molecular recognition between the probe and the hydroxyl and the amino-alcohol moieties of normetanephrine led to interparticle-crosslinking aggregation resulting in a change in the color of the solution, from red to blue, which could be observed by naked eye. The probe was highly selective towards normetanephrine and no color changes were observed in the presence of other neurotransmitter metabolites such as homovanillic acid (HVA) (dopamine metabolite), 5-hydroxyindoleacetic acid (5-HIAA) (serotonin metabolite), or other biomolecules present in urine such as glucose (Glc), uric acid (U.A), and urea. Finally, the probe was evaluated in synthetic urine with constituents that mimic human urine, where a limit of detection of 0.5 mu M was achieved.Financial support from the Spanish Government (project MAT2015-64139-C4) and Generalitat Valenciana (Project PROMETEOII/2014/047 and AICO/2017/093) is gratefully acknowledged. T. Godoy-Reyes is grateful to Generalitat Valenciana for her Santiago Grisolia fellowship.Godoy-Reyes, TM.; Costero, AM.; Gaviña, P.; Martínez-Máñez, R.; Sancenón Galarza, F. (2019). Colorimetric detection of normetanephrine, a pheochromocytoma biomarker, using bifunctionalised gold nanoparticles. Analytica Chimica Acta. 1056:146-152. https://doi.org/10.1016/j.aca.2019.01.003S146152105

    Indirect calculation of monoclonal antibodies in nanoparticles using the radiolabeling process with technetium 99 metastable as primary factor: Alternative methodology for the entrapment efficiency

    Full text link
    [EN] The use of monoclonal antibodies (Mab) in the current medicine is increasing. Antibody-drug conjugates (ADCs) represents an increasingly and important modality for treating several types of cancer. In this area, the use of Mab associated with nanoparticles is a valuable strategy. However, the methodology used to calculate the Mab entrapment, efficiency and content is extremely expensive. In this study we developed and tested a novel very simple one-step methodology to calculate monoclonal antibody entrapment in mesoporous silica (with magnetic core) nanoparticles using the radiolabeling process as primary methodology. The magnetic core mesoporous silica were successfully developed and characterised. The PXRD analysis at high angles confirmed the presence of magnetic cores in the structures and transmission electron microscopy allowed to determine structures size (58.9 +/- 8.1 nm). From the isotherm curve, a specific surface area of 872 m(2)/g was estimated along with a pore volume of 0.85 crn(3)/g and an average pore diameter of 3.15 nm. The radiolabeling process to proceed the indirect determination were well-done. Trastuzumab were successfully labeled (>97%) with Tc-99m generating a clear suspension. Besides, almost all the Tc-99m used (labeling the trastuzumab) remained trapped in the surface of the mesoporous silica for a period as long as 8 h. The indirect methodology demonstrated a high entrapment in magnetic core mesoporous silica surface of Tc-99m-traztuzumab. The results confirmed the potential use from the indirect entrapment efficiency methodology using the radiolabeling process, as a one-step, easy and cheap methodology. (C) 2018 Elsevier B.V. All rights reserved.The authors would like to thank the National Scientific and Technological Research Council (CNPQ) and the Rio de Janeiro State Research Foundation (FAPERJ) for funding. Authors also gratefully acknowledge the financial support from the Ministerio de Economia y Competitividad (Project MAT2012-38429-004-01) and the Generalitat Valenciana (project PROMETEO/2009/016) for support.Helal-Neto, E.; Sánchez-Cabezas, S.; Sancenón Galarza, F.; Martínez-Máñez, R.; Santos-Oliveira, R. (2018). Indirect calculation of monoclonal antibodies in nanoparticles using the radiolabeling process with technetium 99 metastable as primary factor: Alternative methodology for the entrapment efficiency. Journal of Pharmaceutical and Biomedical Analysis. 153:90-94. https://doi.org/10.1016/j.jpba.2018.02.017S909415

    A Versatile New Paradigm for the Design of Optical Nanosensors Based on Enzyme-Mediated Detachment of Labeled Reporters: The Example of Urea Detection

    Full text link
    "This is the peer reviewed version of the following article: Llopis-Lorente, Antoni, Reynaldo Villalonga, M. Dolores Marcos, Ramón Martínez-Máñez, and Félix Sancenón. 2018. A Versatile New Paradigm for the Design of Optical Nanosensors Based on Enzyme‐Mediated Detachment of Labeled Reporters: The Example of Urea Detection. Chemistry A European Journal 25 (14). Wiley: 3575 81. doi:10.1002/chem.201804706. , which has been published in final form at https://doi.org/10.1002/chem.201804706. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Here, a new bio-inspired nanoarchitectonics approach for the design of optical probes is presented. It is based on nanodevices that combine 1) an enzymatic receptor subunit, 2) a signaling subunit (consisting of a labeled reporter attached to a silica surface), and 3) a mechanism of communication between the two sites based on the production of chemical messengers by the enzymatic subunit, which induces the detachment of the reporter molecules from the silica surface. As a proof of concept, a urea nanosensor based on the release of Alexa-Fluor-647-labeled oligonucleotide from enzyme-functionalized Janus gold-mesoporous-silica nanoparticles (Au-MSNPs) was developed. The Janus particles were functionalized on the silica face with amino groups to which the labeled oligonucleotides were attached by electrostatic interactions, whereas the gold face was used for grafting urease enzymes. The nanodevice was able to release the fluorescent oligonucleotide through the enzyme-mediated hydrolysis of urea to ammonia and the subsequent deprotonation of amino groups on the silica face. This simple nanodevice was applied for the fluorometric detection of urea in real human blood samples and for the identification of adulterated milk. Given the large variety of enzymes and reporter species that could be combined, this is a general new paradigm that could be applied to the design of a number of optical probes for the detection of target analytes.A.L.-L. is grateful to "La Caixa" Banking Foundation for his Ph.D. fellowship. The authors thank to the Spanish Government (MINECO Projects MAT2015-64139-C4-1, AGL2015-70235-C2-2-R, CTQ2014-58989-P and CTQ2015-71936-REDT) and the Generalitat Valencia (Projects PROMETEOII/2014/047, PROMETEO2018/024) for support. The Comunidad de Madrid (S2013/MIT-3029, Programme NANOAVANSENS) is also gratefully acknowledged.Llopis-Lorente, A.; Villalonga, R.; Marcos Martínez, MD.; Martínez-Máñez, R.; Sancenón Galarza, F. (2019). A Versatile New Paradigm for the Design of Optical Nanosensors Based on Enzyme-Mediated Detachment of Labeled Reporters: The Example of Urea Detection. Chemistry - A European Journal. 25(14):3575-3581. https://doi.org/10.1002/chem.201804706S35753581251

    A Colorimetric Probe for the Selective Detection of Norepinephrine Based on a Double Molecular Recognition with Functionalized Gold Nanoparticles

    Full text link
    [EN] A simple colorimetric probe for the selective and sensitive detection of neurotransmitter norepinephrine (NE), an important biomarker in the detection of tumors such as pheochromocytoma and paraganglioma, is described. The sensing strategy is based on the use of spherical gold nanoparticles functionalized with benzaldehyde and boronic acid-terminated moieties. A double molecular recognition involving on one hand the aromatic aldehyde and the aminoalcohol group of NE, and on the other hand the boronic acid and the catechol moiety of the neurotransmitter, results in analyte triggered aggregation of the gold nanoparticles, leading to a bathochromic shift of the SPR band in the UV-vis spectrum of the probe and a clear change in the color of the solution from red to blue. Probe P1 shows a remarkable selectivity toward NE versus other catecholamine neurotransmitters (dopamine and epinephrine) and selected biomolecules (S-HIAA, L-Tyr, glucose, uric acid, Lys and glutamic acid). Moreover, a linear response to NE in the 0-1 mu M concentration range was observed and a limit of detection of 0.07 mu M in aqueous media was determined by UV-vis spectroscopy. The sensitivity of the probe toward NE in synthetic urine was also evaluated. In this medium, a limit of detection of 0.09 mu M was obtained which falls within the range of clinical interestFinancial support from the Spanish Government (Projects MAT2015-64139-C4-1-R and MAT2015-64139-C4-4-R) and the Generalitat Valencia (Projects PROMETEOII/2014/047 and AICO/2017/093) is gratefully acknowledged. T. Godoy-Reyes is grateful to the Generalitat Valenciana for her Santiago Grisolia fellowship.Godoy-Reyes, TM.; Costero, AM.; Gaviña, P.; Martínez-Máñez, R.; Sancenón Galarza, F. (2019). A Colorimetric Probe for the Selective Detection of Norepinephrine Based on a Double Molecular Recognition with Functionalized Gold Nanoparticles. ACS Applied Nano Materials. 2(3):1367-1373. https://doi.org/10.1021/acsanm.8b02254S136713732

    Simple Endotoxin Detection Using Polymyxin-B-Gated Nanoparticles

    Full text link
    "This is the peer reviewed version of the following article: Otri, Ismael, Sameh El-Sayed, Serena Medaglia, Ramón Martínez-Máñez, Elena Aznar, and Félix Sancenón. 2019. Simple Endotoxin Detection Using Polymyxin-B&-Gated Nanoparticles. Chemistry A European Journal 25 (15). Wiley: 3770 74. doi:10.1002/chem.201806306, which has been published in final form at https://doi.org/10.1002/chem.201806306. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] A nanodevice based on mesoporous silica nanoparticles with rhodamine B in the pore framework, functionalized with carboxylates on the outer surface and capped with the cationic polymyxin B peptide, was used to selectively detect endotoxin in aqueous solutions with a limit of detection in the picomolar range.The authors thank the Spanish Government (MAT2015 64139-C4-1-R) and the Generalitat Valenciana (PROMETEO2018/024) for their support. I.O. thanks to Erasmus Mundus Programme, Action 2, Lot 1, Syria, for his predoctoral fellowship. S.S. is grateful to Spanish Ministerio de Economia y Competitividad for his Juan de la Cierva contract (FJCI-2015-27201).Otri, I.; El Sayed, S.; Medaglia, S.; Martínez-Máñez, R.; Aznar, E.; Sancenón Galarza, F. (2019). Simple Endotoxin Detection Using Polymyxin-B-Gated Nanoparticles. Chemistry - A European Journal. 25(15):3770-3774. https://doi.org/10.1002/chem.201806306S377037742515Ulevitch, R. J., & Tobias, P. S. (1994). Recognition of endotoxin by cells leading to transmembrane signaling. Current Opinion in Immunology, 6(1), 125-130. doi:10.1016/0952-7915(94)90043-4YOUNG, L. S. (1977). Gram-Negative Rod Bacteremia: Microbiologic, Immunologic, and Therapeutic Considerations. Annals of Internal Medicine, 86(4), 456. doi:10.7326/0003-4819-86-4-456Mueller, M., Lindner, B., Kusumoto, S., Fukase, K., Schromm, A. B., & Seydel, U. (2004). Aggregates Are the Biologically Active Units of Endotoxin. Journal of Biological Chemistry, 279(25), 26307-26313. doi:10.1074/jbc.m401231200Bhattacharyya, J., Biswas, S., & Datta, A. (2004). Mode of Action of Endotoxin: Role of Free Radicals and Antioxidants. Current Medicinal Chemistry, 11(3), 359-368. doi:10.2174/0929867043456098Braun-Fahrländer, C., Riedler, J., Herz, U., Eder, W., Waser, M., Grize, L., … von Mutius, E. (2002). Environmental Exposure to Endotoxin and Its Relation to Asthma in School-Age Children. New England Journal of Medicine, 347(12), 869-877. doi:10.1056/nejmoa020057M. T. Madigan J. M. Martinko J. Parker T. D. Brock Brock Biology of Microorganisms 2000 Prentice Hall Upper Saddle River 793 794Reynolds, S. J., Milton, D. K., Heederik, D., Thorne, P. S., Donham, K. J., Croteau, E. A., … Larsson, L. (2005). Interlaboratory evaluation of endotoxin analyses in agricultural dusts—comparison of LAL assay and mass spectrometry. Journal of Environmental Monitoring, 7(12), 1371. doi:10.1039/b509256fPeters, M. (2006). Inhalation of stable dust extract prevents allergen induced airway inflammation and hyperresponsiveness. Thorax, 61(2), 134-139. doi:10.1136/thx.2005.049403Peters, M., Fritz, P., & Bufe, A. (2012). A bioassay for determination of lipopolysaccharide in environmental samples. Innate Immunity, 18(5), 694-699. doi:10.1177/1753425912436590Lourenco, F. R., Botelho, T. D. S., & Pinto, T. D. J. A. (2012). How pH, Temperature, and Time of Incubation Affect False-Positive Responses and Uncertainty of the LAL Gel-Clot Test. PDA Journal of Pharmaceutical Science and Technology, 66(6), 542-546. doi:10.5731/pdajpst.2012.00887Voss, S., Fischer, R., Jung, G., Wiesmüller, K.-H., & Brock, R. (2007). A Fluorescence-Based Synthetic LPS Sensor. Journal of the American Chemical Society, 129(3), 554-561. doi:10.1021/ja065016pWu, J., Zawistowski, A., Ehrmann, M., Yi, T., & Schmuck, C. (2011). Peptide Functionalized Polydiacetylene Liposomes Act as a Fluorescent Turn-On Sensor for Bacterial Lipopolysaccharide. Journal of the American Chemical Society, 133(25), 9720-9723. doi:10.1021/ja204013uZeng, L., Wu, J., Dai, Q., Liu, W., Wang, P., & Lee, C.-S. (2010). Sensing of Bacterial Endotoxin in Aqueous Solution by Supramolecular Assembly of Pyrene Derivative. Organic Letters, 12(18), 4014-4017. doi:10.1021/ol1016228Lan, M., Wu, J., Liu, W., Zhang, W., Ge, J., Zhang, H., … Wang, P. (2012). Copolythiophene-Derived Colorimetric and Fluorometric Sensor for Visually Supersensitive Determination of Lipopolysaccharide. Journal of the American Chemical Society, 134(15), 6685-6694. doi:10.1021/ja211570aDullah, E. C., & Ongkudon, C. M. (2016). Current trends in endotoxin detection and analysis of endotoxin–protein interactions. Critical Reviews in Biotechnology, 37(2), 251-261. doi:10.3109/07388551.2016.1141393Prasad, P., Sachan, S., Suman, S., Swayambhu, G., & Gupta, S. (2018). Regenerative Core–Shell Nanoparticles for Simultaneous Removal and Detection of Endotoxins. Langmuir, 34(25), 7396-7403. doi:10.1021/acs.langmuir.8b00978Jurado-Sánchez, B., Pacheco, M., Rojo, J., & Escarpa, A. (2017). Magnetocatalytic Graphene Quantum Dots Janus Micromotors for Bacterial Endotoxin Detection. Angewandte Chemie International Edition, 56(24), 6957-6961. doi:10.1002/anie.201701396Jurado-Sánchez, B., Pacheco, M., Rojo, J., & Escarpa, A. (2017). Magnetocatalytic Graphene Quantum Dots Janus Micromotors for Bacterial Endotoxin Detection. Angewandte Chemie, 129(24), 7061-7065. doi:10.1002/ange.201701396Ahn, G., Sekhon, S. S., Jeon, Y.-E., Kim, M.-S., Won, K., Kim, Y.-H., & Ahn, J.-Y. (2017). Detection of endotoxins using nanomaterials. Toxicology and Environmental Health Sciences, 9(5), 259-268. doi:10.1007/s13530-017-0330-4Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456El Sayed, S., Giménez, C., Aznar, E., Martínez-Máñez, R., Sancenón, F., & Licchelli, M. (2015). Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains. Organic & Biomolecular Chemistry, 13(4), 1017-1021. doi:10.1039/c4ob02083aRibes, À., Santiago-Felipe, S., Aviñó, A., Candela-Noguera, V., Eritja, R., Sancenón, F., … Aznar, E. (2018). Design of oligonucleotide-capped mesoporous silica nanoparticles for the detection of miRNA-145 by duplex and triplex formation. Sensors and Actuators B: Chemical, 277, 598-603. doi:10.1016/j.snb.2018.09.026Ribes, À., Xifré -Pérez, E., Aznar, E., Sancenón, F., Pardo, T., Marsal, L. F., & Martínez-Máñez, R. (2016). Molecular gated nanoporous anodic alumina for the detection of cocaine. Scientific Reports, 6(1). doi:10.1038/srep38649Mondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148Wang, Y., Zhang, D., Liu, W., Zhang, X., Yu, S., Liu, T., … Wang, J. (2014). Facile colorimetric method for simple and rapid detection of endotoxin based on counterion-mediated gold nanorods aggregation. Biosensors and Bioelectronics, 55, 242-248. doi:10.1016/j.bios.2013.12.006Su, W., Cho, M., Nam, J.-D., Choe, W.-S., & Lee, Y. (2013). Aptamer-Assisted Gold Nanoparticles/PEDOT Platform for Ultrasensitive Detection of LPS. Electroanalysis, 25(2), 380-386. doi:10.1002/elan.20120045

    Overview of the Evolution of Silica-Based Chromo-Fluorogenic Nanosensors

    Full text link
    [EN] This review includes examples of silica-based, chromo-fluorogenic nanosensors with the aim of illustrating the evolution of the discipline in recent decades through relevant research developed in our group. Examples have been grouped according to the sensing strategies. A clear evolution from simply functionalized materials to new protocols involving molecular gates and the use of highly selective biomolecules such as antibodies and oligonucleotides is reported. Some final examples related to the evolution of chromogenic arrays and the possible use of nanoparticles to communicate with other nanoparticles or cells are also included. A total of 64 articles have been summarized, highlighting different sensing mechanisms.This research was funded by the Spanish Government (projects RTI2018-100910-B-C41, RTI2018-100910-B-C44, and AGL2015-70235-C2-2-R) and the Generalitat Valenciana (project PROMETEO/2018/024) for support. B.L.-T. is grateful to the Spanish MEC for her FPU grant. Additionally, L.P. thanks the Spanish MEC for his FPI fellowship.Pla, L.; Lozano-Torres, B.; Martínez-Máñez, R.; Sancenón Galarza, F.; Ros-Lis, JV. (2019). Overview of the Evolution of Silica-Based Chromo-Fluorogenic Nanosensors. Sensors. 19(23):1-23. https://doi.org/10.3390/s19235138S1231923Martínez-Máñez, R., & Sancenón, F. (2006). Chemodosimeters and 3D inorganic functionalised hosts for the fluoro-chromogenic sensing of anions. Coordination Chemistry Reviews, 250(23-24), 3081-3093. doi:10.1016/j.ccr.2006.04.016Dutta, S. (2019). Point of care sensing and biosensing using ambient light sensor of smartphone: Critical review. TrAC Trends in Analytical Chemistry, 110, 393-400. doi:10.1016/j.trac.2018.11.014Huang, X., Xu, D., Chen, J., Liu, J., Li, Y., Song, J., … Guo, J. (2018). Smartphone-based analytical biosensors. The Analyst, 143(22), 5339-5351. doi:10.1039/c8an01269eYu, L., Qiao, Y., Miao, L., He, Y., & Zhou, Y. (2018). Recent progress in fluorescent and colorimetric sensors for the detection of ions and biomolecules. Chinese Chemical Letters, 29(11), 1545-1559. doi:10.1016/j.cclet.2018.09.005Martínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053Han, W. S., Lee, H. Y., Jung, S. H., Lee, S. J., & Jung, J. H. (2009). Silica-based chromogenic and fluorogenic hybrid chemosensor materials. Chemical Society Reviews, 38(7), 1904. doi:10.1039/b818893aDescalzo, A. B., Jiménez, D., Haskouri, J. E., Beltrán, D., Amorós, P., Marcos, M. D., … Soto, J. (2002). A new method for fluoride determination by using fluorophores and dyes anchored onto MCM-41Electronic supplementary information (ESI) available: IR spectra, SEM images, X-ray diffraction patterns and TG/TD analysis. See http://www.rsc.org/suppdata/cc/b1/b111128k/. Chemical Communications, (6), 562-563. doi:10.1039/b111128kComes, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Villaescusa, L. A., … Beltrán, D. (2004). Chromogenic Discrimination of Primary Aliphatic Amines in Water with Functionalized Mesoporous Silica. Advanced Materials, 16(20), 1783-1786. doi:10.1002/adma.200400143García-Acosta, B., Comes, M., Bricks, J. L., Kudinova, M. A., Kurdyukov, V. V., Tolmachev, A. I., … Amorós, P. (2006). Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines. Chem. Commun., (21), 2239-2241. doi:10.1039/b602497aDescalzo, A. B., Rurack, K., Weisshoff, H., Martínez-Máñez, R., Marcos, M. D., Amorós, P., … Soto, J. (2005). Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates. Journal of the American Chemical Society, 127(1), 184-200. doi:10.1021/ja045683nRos-Lis, J. V., Casasús, R., Comes, M., Coll, C., Marcos, M. D., Martínez-Máñez, R., … Rurack, K. (2008). A Mesoporous 3D Hybrid Material with Dual Functionality for Hg2+Detection and Adsorption. Chemistry - A European Journal, 14(27), 8267-8278. doi:10.1002/chem.200800632Climent, E., Biyikal, M., Gawlitza, K., Dropa, T., Urban, M., Costero, A. M., … Rurack, K. (2016). A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials. Chemistry - A European Journal, 22(32), 11138-11142. doi:10.1002/chem.201601269Santos-Figueroa, L. E., Giménez, C., Agostini, A., Aznar, E., Marcos, M. D., Sancenón, F., … Amorós, P. (2013). Selective and Sensitive Chromofluorogenic Detection of the Sulfite Anion in Water Using Hydrophobic Hybrid Organic-Inorganic Silica Nanoparticles. Angewandte Chemie International Edition, 52(51), 13712-13716. doi:10.1002/anie.201306688Climent, E., Casasús, R., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2008). Chromo-fluorogenic sensing of pyrophosphate in aqueous media using silica functionalised with binding and reactive units. Chemical Communications, (48), 6531. doi:10.1039/b813199fCliment, E., Agostini, A., Moragues, M. E., Martínez‐Máñez, R., Sancenón, F., Pardo, T., & Marcos, M. D. (2013). A Simple Probe for the Colorimetric Detection of Carbon Dioxide. Chemistry – A European Journal, 19(51), 17301-17304. doi:10.1002/chem.201302991El Sayed, S., Pascual, L., Licchelli, M., Martínez-Máñez, R., Gil, S., Costero, A. M., & Sancenón, F. (2016). Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles. ACS Applied Materials & Interfaces, 8(23), 14318-14322. doi:10.1021/acsami.6b03224Climent, E., Calero, P., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2009). Selective Chromofluorogenic Sensing of Heparin by using Functionalised Silica Nanoparticles Containing Binding Sites and a Signalling Reporter. Chemistry - A European Journal, 15(8), 1816-1820. doi:10.1002/chem.200802074Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie International Edition, 49(34), 5945-5948. doi:10.1002/anie.201001088Climent, E., Giménez, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2011). Selective and sensitive chromo-fluorogenic sensing of anionic surfactants in water using functionalised silica nanoparticles. Chemical Communications, 47(24), 6873. doi:10.1039/c1cc11393cColl, C., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., & Soto, J. (2007). A Simple Approach for the Selective and Sensitive Colorimetric Detection of Anionic Surfactants in Water. Angewandte Chemie International Edition, 46(10), 1675-1678. doi:10.1002/anie.200603800Calero, P., Aznar, E., Lloris, J. M., Marcos, M. D., Martínez-Máñez, R., Ros-Lis, J. V., … Sancenón, F. (2008). Chromogenic silica nanoparticles for the colorimetric sensing of long-chain carboxylates. Chemical Communications, (14), 1668. doi:10.1039/b718690hPallás, I., Marcos, M., Martínez-Máñez, R., & Ros-Lis, J. (2017). Development of a Textile Nanocomposite as Naked Eye Indicator of the Exposition to Strong Acids. Sensors, 17(9), 2134. doi:10.3390/s17092134Comes, M., Rodríguez-López, G., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Beltrán, D. (2005). Host Solids Containing Nanoscale Anion-Binding Pockets and Their Use in Selective Sensing Displacement Assays. Angewandte Chemie International Edition, 44(19), 2918-2922. doi:10.1002/anie.200461511Comes, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Villaescusa, L. A., & Amorós, P. (2008). Hybrid materials with nanoscopic anion-binding pockets for the colorimetric sensing of phosphate in water using displacement assays. Chemical Communications, (31), 3639. doi:10.1039/b804396eComes, M., Aznar, E., Moragues, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2009). Mesoporous Hybrid Materials Containing Nanoscopic «Binding Pockets» for Colorimetric Anion Signaling in Water by using Displacement Assays. Chemistry - A European Journal, 15(36), 9024-9033. doi:10.1002/chem.200900890Calero, P., Hecht, M., Martínez-Máñez, R., Sancenón, F., Soto, J., Vivancos, J. L., & Rurack, K. (2011). Silica nanoparticles functionalised with cation coordination sites and fluorophores for the differential sensing of anions in a quencher displacement assay (QDA). Chemical Communications, 47(38), 10599. doi:10.1039/c1cc13039kLi, Z., Askim, J. R., & Suslick, K. S. (2018). The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chemical Reviews, 119(1), 231-292. doi:10.1021/acs.chemrev.8b00226Salinas, Y., Ros-Lis, J. V., Vivancos, J.-L., Martínez-Máñez, R., Marcos, M. D., Aucejo, S., … Lorente, I. (2012). Monitoring of chicken meat freshness by means of a colorimetric sensor array. The Analyst, 137(16), 3635. doi:10.1039/c2an35211gSalinas, Y., Ros-Lis, J. V., Vivancos, J.-L., Martínez-Máñez, R., Aucejo, S., Herranz, N., … Garcia, E. (2014). A chromogenic sensor array for boiled marinated turkey freshness monitoring. Sensors and Actuators B: Chemical, 190, 326-333. doi:10.1016/j.snb.2013.08.075Salinas, Y., Ros-Lis, J. V., Vivancos, J.-L., Martínez-Máñez, R., Marcos, M. D., Aucejo, S., … Garcia, E. (2014). A novel colorimetric sensor array for monitoring fresh pork sausages spoilage. Food Control, 35(1), 166-176. doi:10.1016/j.foodcont.2013.06.043Zaragozá, P., Ros-Lis, J. V., Vivancos, J.-L., & Martínez-Máñez, R. (2015). Proof of concept of using chromogenic arrays as a tool to identify blue cheese varieties. Food Chemistry, 172, 823-830. doi:10.1016/j.foodchem.2014.09.114Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348jCasasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., & Amorós, P. (2006). New Methods for Anion Recognition and Signaling Using Nanoscopic Gatelike Scaffoldings. Angewandte Chemie International Edition, 45(40), 6661-6664. doi:10.1002/anie.200602045Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 122(40), 7439-7441. doi:10.1002/ange.201001847Climent, E., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Murguía, J. R., … Pérez-Payá, E. (2013). Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials:MycoplasmaDetection. Angewandte Chemie International Edition, 52(34), 8938-8942. doi:10.1002/anie.201302954Ribes, À., Aznar, E., Santiago-Felipe, S., Xifre-Perez, E., Tormo-Mas, M. Á., Pemán, J., … Martínez-Máñez, R. (2019). Selective and Sensitive Probe Based in Oligonucleotide-Capped Nanoporous Alumina for the Rapid Screening of Infection Produced by Candida albicans. ACS Sensors, 4(5), 1291-1298. doi:10.1021/acssensors.9b00169Pla, L., Xifré-Pérez, E., Ribes, À., Aznar, E., Marcos, M. D., Marsal, L. F., … Sancenón, F. (2017). A Mycoplasma Genomic DNA Probe using Gated Nanoporous Anodic Alumina. ChemPlusChem, 82(3), 337-341. doi:10.1002/cplu.201600651Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157kOroval, M., Coronado-Puchau, M., Langer, J., Sanz-Ortiz, M. N., Ribes, Á., Aznar, E., … Martínez-Máñez, R. (2016). Surface Enhanced Raman Scattering and Gated Materials for Sensing Applications: The Ultrasensitive Detection ofMycoplasmaand Cocaine. Chemistry - A European Journal, 22(38), 13488-13495. doi:10.1002/chem.201602457Ribes, À., Aznar, E., Bernardos, A., Marcos, M. D., Amorós, P., Martínez-Máñez, R., & Sancenón, F. (2017). Fluorogenic Sensing of Carcinogenic Bisphenol A using Aptamer-Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 23(36), 8581-8584. doi:10.1002/chem.201701024Oroval, M., Coll, C., Bernardos, A., Marcos, M. D., Martínez-Máñez, R., Shchukin, D. G., & Sancenón, F. (2017). Selective Fluorogenic Sensing of As(III) Using Aptamer-Capped Nanomaterials. ACS Applied Materials & Interfaces, 9(13), 11332-11336. doi:10.1021/acsami.6b15164Ribes, À., Santiago-Felipe, S., Bernardos, A., Marcos, M. D., Pardo, T., Sancenón, F., … Aznar, E. (2017). Two New Fluorogenic Aptasensors Based on Capped Mesoporous Silica Nanoparticles to Detect Ochratoxin A. ChemistryOpen, 6(5), 653-659. doi:10.1002/open.201700106Ribes, À., Xifré -Pérez, E., Aznar, E., Sancenón, F., Pardo, T., Marsal, L. F., & Martínez-Máñez, R. (2016). Molecular gated nanoporous anodic alumina for the detection of cocaine. Scientific Reports, 6(1). doi:10.1038/srep38649Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456dCliment, E., Gröninger, D., Hecht, M., Walter, M. A., Martínez-Máñez, R., Weller, M. G., … Rurack, K. (2013). Selective, Sensitive, and Rapid Analysis with Lateral-Flow Assays Based on Antibody-Gated Dye-Delivery Systems: The Example of Triacetone Triperoxide. Chemistry - A European Journal, 19(13), 4117-4122. doi:10.1002/chem.201300031Climent, E., Martínez-Máñez, R., Maquieira, Á., Sancenón, F., Marcos, M. D., Brun, E. M., … Amorós, P. (2012). Antibody-Capped Mesoporous Nanoscopic Materials: Design of a Probe for the Selective Chromo-Fluorogenic Detection of Finasteride. ChemistryOpen, 1(6), 251-259. doi:10.1002/open.201100008Pascual, L., El Sayed, S., Marcos, M. D., Martínez-Máñez, R., & Sancenón, F. (2017). Acetylcholinesterase-capped Mesoporous Silica Nanoparticles Controlled by the Presence of Inhibitors. Chemistry - An Asian Journal, 12(7), 775-784. doi:10.1002/asia.201700031Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie, 121(45), 8671-8674. doi:10.1002/ange.200904243Candel, I., Bernardos, A., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Parra, M. (2011). Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes. Chemical Communications, 47(29), 8313. doi:10.1039/c1cc12727fAlberto Juárez, L., Costero, A. M., Parra, M., Gaviña, P., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2017). NO2-controlled cargo delivery from gated silica mesoporous nanoparticles. Chemical Communications, 53(3), 585-588. doi:10.1039/c6cc08885fEl Sayed, S., Milani, M., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2015). Hexametaphosphate-Capped Silica Mesoporous Nanoparticles Containing CuIIComplexes for the Selective and Sensitive Optical Detection of Hydrogen Sulfide in Water. Chemistry - A European Journal, 21(19), 7002-7006. doi:10.1002/chem.201500360Oroval, M., Díez, P., Aznar, E., Coll, C., Marcos, M. D., Sancenón, F., … Martínez-Máñez, R. (2016). Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal, 23(6), 1353-1360. doi:10.1002/chem.201604104Lozano-Torres, B., Pascual, L., Bernardos, A., Marcos, M. D., Jeppesen, J. O., Salinas, Y., … Sancenón, F. (2017). Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water. Chemical Communications, 53(25), 3559-3562. doi:10.1039/c7cc00186jColl, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703dGodoy-Reyes, T. M., Llopis-Lorente, A., García-Fernández, A., Gaviña, P., Costero, A. M., Martínez-Máñez, R., & Sancenón, F. (2019). Acetylcholine-responsive cargo release using acetylcholinesterase-capped nanomaterials. Chemical Communications, 55(41), 5785-5788. doi:10.1039/c9cc02602aOtri, I., El Sayed, S., Medaglia, S., Martínez‐Máñez, R., Aznar, E., & Sancenón, F. (2019). Simple Endotoxin Detection Using Polymyxin‐B‐Gated Nanoparticles. Chemistry – A European Journal, 25(15), 3770-3774. doi:10.1002/chem.201806306Ribes, À., Santiago-Felipe, S., Aviñó, A., Candela-Noguera, V., Eritja, R., Sancenón, F., … Aznar, E. (2018). Design of oligonucleotide-capped mesoporous silica nanoparticles for the detection of miRNA-145 by duplex and triplex formation. Sensors and Actuators B: Chemical, 277, 598-603. doi:10.1016/j.snb.2018.09.026El Sayed, S., Giménez, C., Aznar, E., Martínez-Máñez, R., Sancenón, F., & Licchelli, M. (2015). Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains. Organic & Biomolecular Chemistry, 13(4), 1017-1021. doi:10.1039/c4ob02083aSalinas, Y., Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez de Diego, A. (2011). Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles. Chemical Communications, 47(43), 11885. doi:10.1039/c1cc14877jSalinas, Y., Martínez-Máñez, R., Jeppesen, J. O., Petersen, L. H., Sancenón, F., Marcos, M. D., … Amorós, P. (2013). Tetrathiafulvalene-Capped Hybrid Materials for the Optical Detection of Explosives. ACS Applied Materials & Interfaces, 5(5), 1538-1543. doi:10.1021/am303111cSalinas, Y., Agostini, A., Pérez-Esteve, É., Martínez-Máñez, R., Sancenón, F., Dolores Marcos, M., … Amorós, P. (2013). Fluorogenic detection of Tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials. Journal of Materials Chemistry A, 1(11), 3561. doi:10.1039/c3ta01438jSalinas, Y., Solano, M. V., Sørensen, R. E., Larsen, K. R., Lycoops, J., Jeppesen, J. O., … Guillem, C. (2013). Chromo-Fluorogenic Detection of Nitroaromatic Explosives by Using Silica Mesoporous Supports Gated with Tetrathiafulvalene Derivatives. Chemistry - A European Journal, 20(3), 855-866. doi:10.1002/chem.201302461Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210kLlopis‐Lorente, A., Villalonga, R., Marcos, M. D., Martínez‐Máñez, R., & Sancenón, F. (2018). A Versatile New Paradigm for the Design of Optical Nanosensors Based on Enzyme‐Mediated Detachment of Labeled Reporters: The Example of Urea Detection. Chemistry – A European Journal, 25(14), 3575-3581. doi:10.1002/chem.201804706Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Towards Chemical Communication between Gated Nanoparticles. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201405580Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511Luis, B., Llopis‐Lorente, A., Rincón, P., Gadea, J., Sancenón, F., Aznar, E., … Martínez‐Máñez, R. (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition, 58(42), 14986-14990. doi:10.1002/anie.20190886
    corecore