47 research outputs found

    Quarter-wavelength E‖H Beltrami cavity resonators

    Get PDF
    In this paper, we present the design and implementation methods of quarter-wavelength resonators accommodating Beltrami standing waves with parallel electric and magnetic (E‖H) fields. The resonator is bounded by the quarter-wavelength longitudinal electromagnetic conductor (LEMC), the circumferential electromagnetic conductor (CMEC), and the radial electromagnetic conductor (REMC). The LEMC, CEMC, and REMC boundaries are artificially implemented by the circumferentially aligned corrugation, concentrically aligned circular fins, and axisymmetrically aligned radial fins, respectively. The coupling control methods by introducing slots in the CEMC and REMC with the external TM01 and TE01 circular waveguides are presented. We design the quarter-wavelength resonators with the implemented LEMC, CEMC, and REMC boundaries with controlled external couplings and numerically demonstrate their E‖H properties, which confirms the validity of the proposed design method

    Zero Poynting vector E∥H Beltrami field cylindrical cavity resonators

    Get PDF
    In this paper, we present novel cylindrical cavity resonators accommodating spatially and temporally zero Poynting vector Beltrami standing waves with the parallel electric and magnetic fields (E∥H). We introduce the special boundary conditions, i.e., longitudinal electromagnetic conductor (LEMC) on which zero longitudinal electromagnetic components are enforced and circumferential electromagnetic conductor (CEMC) on which zero circumference electromagnetic components are enforced in an axisymmetric waveguide system, and show that the zero Poynting vector E∥H Beltrami standing wave is generated as a superposition of dual degenerated axisymmetric TM and TE standing waves in a cylindrical resonator using the LEMC and CEMC boundary conditions. We present physical implementation methods of the LEMC and CEMC boundary conditions composed of the circumferentially arranged corrugations and the concentrically aligned cylindrical thin fins, respectively. In addition, we numerically demonstrate the Beltrami standing field generation and reveal its peculiar electromagnetic properties: the spatially and temporally E∥H with zero Poynting vector distribution, identical electric and magnetic energy density distributions, and zero local reactive energy flow

    On-Orbit Operation Results of the World\u27s First CubeSat XI-IV – Lessons Learned from Its Successful 15-years Space Flight

    Get PDF
    In recent years, the size and cost of satellites have been reduced, and the frequent launch of satellites have been realized even by small private companies and universities. The first step of this big wave was the first successful launch of CubeSats, 1kg nano-satellites, in June 2003. One of the CubeSats was XI-IV, which was developed by Intelligent Space Systems Laboratory (ISSL) of the University of Tokyo. Its mission was the world’s first on-orbit demonstration of the CubeSat bus system. Due to the spatial, power and cost constraints, most of the bus system was composed of low-cost COTS parts, and a “cross-check” type fault redundancy system against the radiation effects was implemented to achieve as better reliability as possible within the resource constraints. Since the successful launch by the ROCKOT launch vehicle from Russia, the satellite has been in normal operation for over fifteen years since the launch (as of June 2019). The operation has been jointly conducted by the University of Tokyo and amateur radio operators in Japan. This paper reports its more-than-15-years world\u27s longest CubeSat operation results and the lessons learned from it

    Window Functions for Frame Correlation Reduction in Overlapped FFT Based Energy Detection

    No full text

    Delayed Correlation Based Signal Detection Scheme with Filter Bank for OFDM Signal

    No full text

    Single-Stage Arthroscopic Anterior and Posterior Cruciate Ligament Repairs and Open Medial Collateral Ligament Repair for Acute Knee Dislocation

    No full text
    Till date, there are no clear guidelines regarding the treatment of multiple ligament knee injuries. Ligament repair is advantageous as it preserves proprioception and does not involve grafting. Many studies have reported the use of open repair and reconstruction for multiple ligament knee injuries; however, reports on arthroscopic-combined single-stage anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) repairs are scarce. In this report, we describe a case of type III knee dislocation (ACL, PCL, and medial collateral ligament (MCL) injuries) in a 43-year-old man, caused by contact while playing futsal. On the sixth day after injury, arthroscopic ACL and PCL repairs were performed with open MCL repair. The proximal lesions in the three ligaments that were injured were sutured using no. 2 strong surgical sutures. The ACL was pulled out to the lateral condyle of the femur and fixed using a suspensory fixation device. The PCL was pulled out to the medial condyle of the femur, and the MCL was pulled towards the proximal end of the femur; both were fixed using suture anchors. Early mobilization was performed, and both, clinical and imaging outcomes, were good two years after surgery

    Shear Stress-Normal Stress (Pressure) Ratio Decides Forming Callus in Patients with Diabetic Neuropathy

    No full text
    Aim. Callus is a risk factor, leading to severe diabetic foot ulcer; thus, prevention of callus formation is important. However, normal stress (pressure) and shear stress associated with callus have not been clarified. Additionally, as new valuables, a shear stress-normal stress (pressure) ratio (SPR) was examined. The purpose was to clarify the external force associated with callus formation in patients with diabetic neuropathy. Methods. The external force of the 1st, 2nd, and 5th metatarsal head (MTH) as callus predilection regions was measured. The SPR was calculated by dividing shear stress by normal stress (pressure), concretely, peak values (SPR-p) and time integral values (SPR-i). The optimal cut-off point was determined. Results. Callus formation region of the 1st and 2nd MTH had high SPR-i rather than noncallus formation region. The cut-off value of the 1st MTH was 0.60 and the 2nd MTH was 0.50. For the 5th MTH, variables pertaining to the external forces could not be determined to be indicators of callus formation because of low accuracy. Conclusions. The callus formation cut-off values of the 1st and 2nd MTH were clarified. In the future, it will be necessary to confirm the effect of using appropriate footwear and gait training on lowering SPR-i
    corecore