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ABSTRACT

In this paper, we present the design and implementation methods of quarter-wavelength resonators accommodating Beltrami standing waves
with parallel electric and magnetic (E|H) fields. The resonator is bounded by the quarter-wavelength longitudinal electromagnetic conductor
(LEMC), the circumferential electromagnetic conductor (CMEC), and the radial electromagnetic conductor (REMC). The LEMC, CEMC,
and REMC boundaries are artificially implemented by the circumferentially aligned corrugation, concentrically aligned circular fins, and
axisymmetrically aligned radial fins, respectively. The coupling control methods by introducing slots in the CEMC and REMC with the
external TMy; and TE; circular waveguides are presented. We design the quarter-wavelength resonators with the implemented LEMC,
CEMC, and REMC boundaries with controlled external couplings and numerically demonstrate their E|H properties, which confirms the

validity of the proposed design method.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0138601

I. INTRODUCTION

The Beltrami cylindrical cavity resonator whose resonant mode
has a unique property of the spatially and temporally parallel electric
and magnetic fields has been proposed.! The fields in the Beltrami
cylindrical cavity resonator are represented as

E-= efiero[ P J1(kep) sin(Bz)e, + %]l(kcp) cos(fz)e,

ke
+Jo(kep) cos(ﬂz)ez], (1)
H=- ie_i“’tHo[kéch (kep) sin(Bz)e, + %h (kep) cos(Bz)e,
+ Jo(kep) cos(ﬁz)ez], (2)

where a is the radius of the cavity, ko is the wavenumber number
in vacuum, k. is the cut-off wavenumber, f3 is the phase constant,

and the relationship B = \/ko® — k. holds. The resonant fields of
Egs. (1) and (2) are a superposition of the TMy, and its electro-
magnetically dual TE standing waves with the same amplitudes and

+7/2 spatial phase difference' and are spatially and temporally par-
allel with each other.” '’ The existence of the resonant modes in
the cavity resonator perfectly isolated from the external circuits
has been numerically confirmed. In order to excite the resonator
in practical use, excitation schemes with (a) compatibility with the
Beltrami fields and (b) individual controllability of TM and TE
resonances are indispensable; however, the physical implementa-
tion and design methods of the excitation scheme have not been
proposed yet.

In this paper, we propose an implementation method for the
Beltrami resonators with individual TM and TE coupling con-
trol functionalities. According to Egs. (1) and (2), the electric and
magnetic fields in the transverse plane have only circumferential
components E, and H, at 8z = 0, whereas they have only radial com-
ponents E, and H, at fz = 7/2. Exploiting this fact, we propose an
excita8ion method by introducing a quarter-wavelength resonator
with complementary artificial boundaries that are compatible with
the Beltrami fields with individual controllability. In the following,
the implementation methods of the quarter-wavelength resonator
and the artificial boundaries are presented, and the E|H Beltrami
field generation is demonstrated.
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Il. BELTRAMI RESONATOR WITH COUPLING CONTROL
FUNCTIONALITY

A. Quarter-wavelength Beltrami resonators

Figure 1 shows the proposed Beltrami resonator with indepen-
dent TM and TE coupling control functionalities. The resonator is a
LEMC waveguide terminated by singular boundary conditions, i.e.,
(a) a circumferential electromagnetic conductor (CEMC) enforcing
E, = 0and H, = 0 (presented in the previous study') and (b) a radial
electromagnetic conductor (REMC) enforcing E, =0 and H, =0
(presented in this paper). The CEMC boundary operates as open-
and short-circuited boundaries for TM and TE modes, respectively,
whereas the REMC boundary operates as short- and open-circuited
boundaries for TM and TE modes, respectively. This leads to the
quarter-wavelength Beltrami resonant field.

The CEMC and REMC boundary conditions can be artificially
implemented with the coupling control functionality of conven-
tional TMo; and TEy; circular waveguides, respectively. It is noted
that the coupling coefficient designs to generate the Beltrami fields
are not trivial since the TM and TE field distributions differ and their
unloaded Qs are not identical.

Figure 2 shows the implemented Beltrami resonator with the
quarter-wavelength LEMC waveguide, the CEMC component, and
the REMC component. The LEMC waveguide is implemented by
circumferential corrugation.' The design methods of the CEMC and
REMC components are presented in the following.

B. Circumferential electromagnetic conductor
with coupling control functionality

The CEMC boundary is implemented by concentrically aligned
circular fins with depth dcemc and thickness tcpmc shown in
Fig. 2(c). The circular fin depth dcpmc is supposed to be Ag/4 so
that the incident TM and TE modes can be reflected with the reflec-
tion coefficients of 1 and —1, respectively. This results in E, = 0 and
H, = 0 on the surface.

This component of Fig. 2(c) has coupling control functional-
ity with an external TMy,; circular waveguide with the narrow arc
slots axisymmetrically aligned at the bottom. The coupling coeffi-
cient, xtm, can be tuned by changir&g the slot width w""C, the slot

thickness t-*MC, the arc radius ps™C, the arc angle p<™, and the

number of the slots NCEMC,
Ae
4
T
LEMC
TM,; mode A ™ o TVVY TEg mode
K™ Qo Qo KTE

Waveguide CEMC  Beltrami resonator ~REMC Waveguide
FIG. 1. Quarter-wavelength E|H Beltrami resonator composed of the LEMC wave-
guide and the CEMC/REMC components. The resonator is coupled to TM and TE
feeding waveguides via small apertures in the CEMC and REMC components,
respectively. xty and ke are the coupling coefficients from the external TMy4 and
TEy waveguides, respectively.

Back side

Front side

()

FIG. 2. Quarter-wavelength Beltrami resonator implementation cut on the plane,
including the axis. (Only a half portion is shown.) (a) The general view. (b) The
LEMC waveguide with the length L. a is the inner radius and d\ gy is the corruga-
tion depth. (c) The CEMC boundary implementation. dceyc is the fin depth, fcemc
is the fin thickness, w<EME is the slot width, tEMC is the slot thickness, pCEMC is
the arc radius, and pSBMC€ s the arc angle. (d) The REMC boundary implementa-
tion. b is the center hole radius, drgyc is the fin depth, treyc is the fin thickness,
wREMC s the slot width, {REMC is the slot thickness, pREMC is the arc radius, and
oEMC s the arc angle. The dashed half-circles in (a), (c), and (d) represent the
periphery of the feeding circular waveguides.

C. Radial electromagnetic conductor with coupling
control functionality

The REMC boundary is implemented by radially aligned fins
in a short-circuited LEMC waveguide, as shown in Fig. 2(d). The
thickness of the fin fremc is supposed to be sufficiently smaller than
the wavelength so that the incoming TE wave with the orthogonal
electric field pattern toward the radial fins penetrates the REMC
boundary on the surface and is reflected at the bottom. The depth
of the fin dremc is chosen to be 7/(28), where f3 is the phase con-
stant of the TE wave inside the REMC, which is identical to that
of the TE wave in the resonator. Therefore, the incoming TE wave
is reflected with the reflection coefficient of € at the REMC sur-
face, whereas the incoming TM wave is reflected with the reflection
coefficient of e at the REMC surface due to the radial fins. This
leads to E, = 0 and H, = 0 on the surface. Incidentally, since the
electric field of the incoming TE wave on the axis is zero, the con-
ductor in the region 0 < p <b (b <« a) is removed for fabrication
convenience.
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This device of Fig. 2(d) also has the coupling control functional-
ity with an external TEq; circular waveguide with the narrow radial
slots axisymmetrically aligned at the bottom. The coupling coeffi-
cient, xtE, can be determined by choosing the slot width wy MC, the
slot length JREMC ' the radial position p?ﬁ €, the slot thickness tREMC,

and the number of the slots NREMC,

I1l. DESIGN METHOD

An E|H Beltrami field is theoretically obtained as a superpo-
sition of the TM and TE modes with the same amplitude, i.e., with
identical TM and TE stored energies in the resonator. However, in
reality, it is not trivial to store the identical TM and TE mode ener-
gies in the proposed resonator structure since the effective LEMC
radii differ for the TM and TE modes, and the TM and TE fields
distribute differently in the CEMC and REMC components as well.
Here, we theoretically derive the E|H resonant condition based on
circuit theory.

A. Equivalent circuit model for the Beltrami resonator

We introduce two individual equivalent circuits for the orthog-
onal TM and TE modes, each with a series RLC resonator coupled to
an external feeding line shown in Fig. 3. Let us refer to the TM and
TE feeding lines as Ports 1 and 2, respectively. In the TM resonator
of Fig. 3(a), the resonator end on the Port 2 side is short-circuited
since the TM mode is perfectly reflected at the surface of the REMC
boundary on the Port 2 side with a reflection coefficient of —1. The
resonator end on the Port 1 side is coupled to the external TM
feeding line via an ideal transformer with a turns ratio 1: #nrum. In
contrast, for the TE resonator of Fig. 3(b), the resonator end in the
Port 1 side is short-circuited since the TE mode is perfectly reflected
at the surface of the CEMC boundary in the Port 1 side with the
reflection coefficient of —1. The resonator end in the Port 2 is cou-
pled to the external TE feeding line via an ideal transformer with
a turns ratio 1: ng as well. It is noted that the resistance in each

C
12 g Rrv Ltm ™
Port 1 zM TM short
(a)

E
L TE

Cr
ntg 1
TE short % ZJE Port 2

TE R
(b)

FIG. 3. Equivalent circuits for (a) the TM resonance and for (b) the TE resonance.
The TM equivalent circuit is coupled to the feeding line with the characteristic
impedance ZgM via the ideal transformer with a turns ratio of 1 : nty. The TE
equivalent circuit is coupled to the feeding line with the characteristic impedance
ZOTE via the ideal transformer with a turns ratio of 1: nye. Ports 1 and 2 are
assigned on the sides of the TM and TE feeding lines, respectively.

ARTICLE scitation.org/journall/adv

circuit includes all the losses in the resonator and the CEMC and
REMC components.

B. E|H condition

In order to obtain the E|H condition, let us first calculate the
stored energies in the TM and TE resonators. According to equiva-
lent circuits in Fig. 3, the unloaded Qs for the TM and TE resonators
are readily obtained by

™ ngLTM 1
QO = = T TM > (3 )
Rrym wy CrmRT™
T @ Lte 1
QO = = " TE > (4)
R1e wy CreRTE

where Lty and Crv are the inductance and capacitance in the TM
resonator, respectively, and Ltg and Crg are the inductance and
capacitance in the TE resonator, respectively, and w¢™ and wg®
are the resonant angular frequencies of the TM and TE resonators,
respectively. To realize the E|H fields, the TM and TE resonant
frequencies wOM and wOTE have to be identical, i.e.,

wy =wy = = = Wo.
LtmCrm LteCre

1 1
T™ _  TE _ )

Under this condition, the TM and TE stored energies at the
resonance, U™ and UTE, are given by

TM pTM T™
Urm = Q" Pa” _ AQ Py, (6)
2
wo a)o(l + KTM)
TE HTE TE
P, 4 K
Ut = QP AQq e 5 P2, (7)
wo (Uo(l + K’]‘E)

where P; and P, are the available powers of the sources of Port 1 and
Port 2, respectively, and P™ and PF are the powers flowed into the
TM and TE resonators, respectively, and xrm and «re are coupling
coefficients of the TM and TE external circuits given by

2 TM
nrmZ

KTM = M, (8)
Rm
2 STE
nreZ

KrE = —0 %)
Rre

Incidentally, P™ and PIE are written with the reflection coefficients
|Sll (a)o)| and |Szz(wo)‘ as

P = (1 - 181 (wo)|) Py, (10)

Pi = (1 [S22(w0)[")P2. (11)

Therefore, according to Egs. (6) and (7) with P; = P,, the ratio of
Utm and Utk is given by

Urg E(1+K’1‘M)2 QoTE
Um kv (1 +x18)* QY

(12)

AIP Advances 13, 025158 (2023); doi: 10.1063/5.0138601
© Author(s) 2023

13, 025158-3

Jpd-auluo™ L 851 5Z0/66£85291/L098€EL0°G/€90 L 0 L/10p/Pd-8joe/ApE/die/Bi0"die sqndj/:duy woy pepeojumoq


https://scitation.org/journal/adv

KYOTO UNIVERSITY

K 5F

AIP Advances

A Self-archived copy in
Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp

ARTICLE

RBAFFHER)FD b

KURENAI

A

Kyoto University Research Information Repository

scitation.org/journal/adv

In reality, the stored energies of Eqgs. (6) and (7) are distributes
not only inside the resonator but also in the CEMC and REMC
components. In addition, the stored energies inside the TM and
TE resonators differ due to the artificial LEMC boundary imple-
mentation with the corrugation. As for the TM resonator, the
energy is stored in the resonator and the CEMC component. The
energy ratio in the resonator is expressed by Urm/(1 + arm ), where
arm is the ratio between the energy in the resonator and that in
the CEMC component [see Fig. 4(a)]. As for the TE resonator,
the energy is stored inside the resonator, the REMC component,
and the LEMC corrugation. The energy ratio in the resonator is
expressed by Ute/(2(1 + arg)), where arg is the ratio between the
energy in the resonator and that in the LEMC corrugation consid-
ering the fact that the energy in the REMC component is identical
to the total energy in the resonator and the LEMC corrugation
[see Fig. 4(b)].

The E|H Beltrami field occurs when the TM and TE energies
inside the resonator except for the LEMC corrugation agree with
each other. Consequently, we obtain

Um _ U
1+ arm 2(1+(XTE).

(13)

Note that the stored energy ratios arm and ate are theoretically
obtained from the mode matchings at the CEMC surface and the
LEMC corrugation surface, respectively, as

alﬁ?)/\()
= 14
T (@ + por) (e
_ (1= Deor)m
OTE = 721)01 . (15)

See Appendix. By applying Eqs. (14) and (15) into Eq. (13),
Ute/Utm is determined from the resonator radius a and the LEMC
corrugation duty Dcor as

Urg _ 2+(1—Dmr)ﬂ/p01 _ U"IEE
Ui 1+ (1-po3/(4a’n®))} ~ Ui’

(16)

where Ao is the wavelength in free space and p, is the first zero of
zeroth first kind Bessel function J,. Therefore, the E|H condition
for xrm and kg is obtained by applying Eq. (16) into Eq. (12) as

KIE (1+xmm)®  Ufp Qo™

= . (17)
0 KTM (1 + KTE)2 U{:MQgE
LEMC corrugation /
Note that any combination of xy and xrg satisfying Eq. (17)
gives an E||H field. Figure 5 depicts the relationship between xry and
Port 1 ritmum : Unu o Port 2 xrE of Eq. (17) for specific Urs Qo™ /(Uim Qg]; values ofT%.IZS, 0.25,
i - i 0.5, 1,2, 4,and 8. Note that the value of Utz Qy "~ /(Urnm Q) is deter-
mined directly from the resonator structure and material. It is also
’ noted that the relationship between xrym and #rg is linear for xry and
CEMC LEMC corrugation REMC xr sufficiently smaller than unity, whereas the relationship deviates
Total energy Urm from a linear one depending on the Uiz Q4™ /(Ui QiF) value.
(a)
Urm Ute ™
Tfam 21+ o) UT:Eig'mﬁ
8 4 2 U Qo
10° ‘
areUre : !
201 + ore) \ LEMC corrugation ' ///
v v 7 0.5
TE TE ’
Port ‘ 21+ o) 2 Port2 g1ty 0.25
; ] 0,125
CEMC LEMC corrugation REMC s o
Total energy Urg L
(b) 1072 P
1072 107! 10°
FIG. 4. The energy distributions of (a) the TM mode and (b) the TE mode. The KTM

total energies in the TM and TE mode resonances are denoted as Ury and Urg,
respectively. The TM stored energy in the resonator region enclosed by the blue
line is Urm/ (1 + amm). The TE stored energy in the resonator region enclosed by
the red line is Ure/(2(1 + are) ). The E||H Beltrami resonance occurs under the
condition UTM/(1 aF OCTM) = UTE/(2(1 aF tXTE)).

FIG. 5. The E||H resonant condition for the TM and TE coupling coefficients xry
and xre for the specific U, Q7™ /(U5 QgF) values of 0.125 (blue dotted line),
0.25 (blue dashed line), 0.5 (blue solid line), 1 (black solid line), 2 (red solid line),
4 (red dashed line), and 8 (red dotted line).
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IV. NUMERICAL SIMULATIONS
A. Resonator design

We first determine the structure of a Beltrami resonator com-
posed of the LEMC waveguide and CEMC/REMC components
without coupling slots. We determine the resonant frequency to
be 2.38 GHz and the lateral LEMC boundary to be implemented
with 64 ¢-segments of corrugation with the duty ratio Deor = 0.2
considering realistic implementations. Then, by using a commercial
finite element method based simulator, the High Frequency Struc-
ture Simulator (HFSS), we numerically obtain the effective LEMC
radius a considering the fringing effect as 62.5 mm with a corruga-
tion depth of 41.64 mm so that the TM and TE cut-off frequencies
coincide with each other." In the simulation, we use the conduc-
tivity of the resonator material as 5.8 x 10° S/m. The resonator
length L is theoretically obtained from a as 48.57 mm accordingly.
As for the CEMC component, let the CEMC be composed of ten
equally spaced concentric fins with the fin thickness tcemc = 1 mm,
as shown in Fig. 2(c). The fin depth dcemc is numerically determined
as 31.16 mm by taking into account the fringing effect at the resonant
frequency of 2.38 GHz. As for the REMC component, let the REMC
be composed of 32 radial fins with fin thickness frpmc = 1.23 mm
with the center hole radius b= 7.5 mm, as shown in Fig. 2(d).
The fin depth dremc is numerically determined as 50.75 mm by
taking into account the fringing effect at the resonant frequency
of 2.38 GHz.

B. External coupling designs for E||H realizations

Now, we realize the E|H resonance by determining the external
coupling structures. According to eigenmode simulations by HESS,
the TM and TE unloaded Qs of the designed resonator are calcu-
lated as QOTM =5.78 x 10° and QgE =3.92 x 10°, respectively. On the
other hand, from Eq. (16), the theoretical TM and TE stored energy
ratio is

UIE =242, (18)
™

N p = 62.5mm

1071 wsiEM(? = 3mm
= p=31.25mm p=31.25mm
b wEMC = 3mm

1072

-3
10 5 10 15 20 25
Slot thickness #EEMC (mm)
(a)

Applying these Q4™, Qo*, and Usy/ Uiy values to Eq. (17), the rm
and xrg have to satisfy

rre (1+Kkm)” _ UfgQp
wrv (1+wre)’ Ui Q"

= 3.50. (19)

In order to determine the coupling slot structures, we numerically
investigate the relationship between the slot dimension and the cou-
pling coefficients. The coupling coefficients are calculated by the
reflection coefficients |Si1| and [S»| in Figs. 6(a) and 6(b) as

1- [y

KTM = (20)
™ 1+ |S11|
1- |Szz|

21

™= e (21)

Figure 6(a) shows the slot thickness dependence of xry for spe-
cific three slot dimensions. Here, the radius of the external feeding
TMo; circular waveguide is given as 62.5 mm so that its phase con-
stant is identical to that of the resonant E|H Beltrami field inside
the resonator. Note that the radius of the external feeding wave-
guide is arbitrary. The black and red lines are for arc radius p{™°
= 31.25 mm and 62.5 mm, respectively. The other parameters are
wCEME = 3 mm, (pSCEMC = 37/8, and NS®MC = 4. It is seen from the
figure that the coupling coefficient decreases with the slot thick-
ness and the larger the arc radius pS™, the larger the coupling
coefficient xry. The black and blue lines are for the slot width
= 3 and 1 mm, respectively. The other parameters are
pSME = 31.25 mm, @M = 37/8, and NEPMC = 4. It is seen from
the figure that the coupling coefficient decreases with the slot thick-
ness and the narrower the slot width wi™€, the smaller the coupling
coefficient xrm. Figure 6(b) shows the slot thickness dependence of
wre for specific three slot dimensions. Here, the radius of the exter-
nal feeding TEo; circular waveguide is given as 99.58 mm so that
its phase constant is identical to that of the resonant E|H Beltrami
field inside the resonator. Note that the radius of the external feed-

ing waveguide is arbitrary. The black and red lines are for the slot

10°

s £

==

|

!
e

107!

. NREMC = 16
NSREMC =16 wSREMC =3mm
10—2 w:ZEMC = 1mm
N§REMC =8

waMC = 3mm

-3
1075 10 15 20 25
Slot thickness £REMC (mm)
(b)

FIG. 6. The slot thickness dependences of (a) the TM coupling coefficient xry and (b) the TE coupling coefficient xre. The black, blue, and red lines in (a) correspond to

CEMC

the combinations of arc radius pS CEMC of (pCEMC |y CEMC

and the slot width w; of (ps™™<, w§

= (31.25 mm, 3 mm), (31.25 mm, 1 mm), and (62.5 mm, 3 mm), respectively. The slot

number NEEMC is 4, and the arc angle ¢CEMC is 37/8. The black, blue, and red lines in (b) correspond to the combinations of the slot number NSEMC and the slot width
WREMC of (NREMC WREMCY _ (16, 3 mm), (16, 1 mm), and (8, 3 mm), respectively. The radial slot position pREM€ is 31.25 mm, and the slot length /SEMC is 31.25 mm. All

the lines are fitted with least squares approximations.

s
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10°
I 1
I
3 N I E W .
FIG. 7. The relation between xry and
) e I @Y“ ke for E[H fields (a) and the p-
& 1071 g 05 dependence of |cos 6] for the three
1 = " v and e combinations (b). The red,
blue, and green points in (a) correspond
to (KTM,KTE): (7.90 x 10_2, 6.84
7 x 1077), (545 x 1072, 3.1 x 10~"),
10-2 0 and (2.13 x 1072, 8.16 x 1072), respec-
1072 107! 10° 0 02 04 06 038 1 tively.
KT™ pla
(@) (b)
number of NXMC = 16 and 8, respectively. The other parameters three resonators corresponding to the points are numerically cal-

are wEEMC =3 mm, REMC = 3125 mm, and prMC = 31.25 mm. It
is seen from the figure that the coupling coefficient decreases with
the slot thickness and the more the slot number NX*MC, the larger
the coupling coefficient xrg. The black and blue lines are for the slot
width of wi™™MC = 3 and 1 mm, respectively. The other parameters
are NXEMC = 16, [REMC = 31 25 mm, and p?EMC =31.25 mm. [t is seen
from the figure that the coupling coefficient decreases with the slot
thickness and the narrower the slot width wXEMC, the smaller the
coupling coefficient xrg.

The curve in Fig. 7(a) is the xrm and wrg relationship of Eq. (19)
for the designed resonator. In order to examine the E|H reso-
nance, we arbitrarily choose the three (xrm,xrg) points of (7.90
x 1072, 6.84 x 107Y), (5.45 x 1072, 3.11 x 107}), and (2.13 x 1072,
8.16 x 10_2) on the curve, and the field distributions in the

culated. The TM and TE coupling slot dimensions at Port 1 and
Port 2 are determined according to each set of coupling coeffi-
cients (xrMm, k1E ), respectively. The slot dimensions are summarized
in Table I. Figure 7(b) shows the p-dependence of |cos 6| on the
transverse section z = L/2 for the three resonators, where 0 is the
angle between the E and H vectors. The value of |cos 6] represents
|E-H/(|E|[H|)|, and the E and H vectors are parallel or antiparallel
with the value of unity, whereas the E and H vectors are orthogo-
nal with the value of null. It is seen from Fig. 7(b) that the value
of |cos 6] is almost unity for each xrm and xrg combination except
in the vicinity of the periphery (p/a ~ 1) due to the local field per-
turbations by the corrugation. Figure 8 shows an example of the
time series snapshots of electromagnetic field distributions on the
transverse section z = L/2 for the coupling coefficient combination

TABLE I. The TM and TE slot dimensions for the coupling coefficients «ry and g satisfying the E||H condition. The numbers of the TM and TE slots are 4 and 16, respectively.
The TM slot dimensions wEEME, NtlsCEMC, pSEMC and oPMC represent the slot width, the slot thickness, the arc radius, and the arc angle, respectively. The TE slot dimensions
wREMC  [REMC 5REMC 'and {REMC represent the slot width, the slot length, the radial position, and the slot thickness, respectively.

CEMC

CEMC REMC REMC

(%™, KTE) wEEME (mm) £ (mm) pSCEMC (mm) ¢ wREMC (mm)  IREMC (mm) Ps (mm) £ (mm)
(7.90 x 1072,6.84 x 107 3 13 3125 371/8 3 3125 3125 2
(5.45x 10723.11 x 107) 3 17 3125 371/8 3 3125 3125 8.3
(2.13 x 1072,8.16 x 10_2) 3 25 31.25 37/8 3 31.25 31.25 15.3
N N NN -~ - ~
SEREENIN NN NN U
v . : \ vt et ‘: N\ \ * T e ™ v\ | P R BRI
PP B B I N A O s T SOAINEEEY
R o s ¢ 7/ YRR et r )/ VAV 2 B i d4 s P B Y gy
‘4.~""// N U T g R Y Pty ",
\ A\ L ‘ \ \ ~ el 1 \ A ~ T - bt N ~ T -
N e VNN T VNN VYV .-
N \ ~ AN ~ AN -~ -
g b b4
wt =0 wt = — wl = — wt = —
6 3 2

FIG. 8. The time-series snapshots of the electric and magnetic field distributions on the transverse section z = L/2 for the resonator with (xy, x1e) = (5.45 x 1072,
3.1 x 10~"). The red arrows represent the electric field vector, whereas the blue arrows represent the magnetic field vector.
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(ks 18) = (7.90 x 1072, 6.84 x 107"). It is seen from the figure
that the electric and magnetic fields are parallel with each other both
spatially and temporally. From these results, we can conclude that
the E||H Beltrami resonance is realized by choosing coupling slot
parameters so that the coupling coefficients satisfy Eq. (17), and the
validity of the presented design method is confirmed.

V. CONCLUSIONS

In this paper, we have presented the design and realistic imple-
mentation methods of the quarter-wavelength E|H Beltrami cavity
resonators using CEMC and REMC boundary components. Imple-
mentation methods of the CEMC and REMC boundaries with the
TM and TE coupling control functionalities have been shown. We
have theoretically derived the relation between the TM and TE cou-
pling coefficients for the E|H condition based on circuit theory.
We have numerically designed the resonator operating at 2.38 GHz
based on the design theory and numerically demonstrated the E|H
Beltrami field generations in the resonator.
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APPENDIX: CALCULATIONS OF arm AND are

In the LEMC, the TM electromagnetic field is represented with
orthogonal wave functions for the circular waveguide, e (p, ¢, z)
(m=1,2,---)as

Kyoto University Resear

RBAFFHER)FD b

KURENAI

rch Information Repository

A

scitation.org/journal/adv

E"™M(p, 9,2) =Eo(Bkc T (kep) sin Bze, + Jo(kep)e: cos Bz)
+ Zef,,EMC(p, 0. 2), (A1)

with the origin at the REMC center. Assuming that the higher mode
energies are sufficiently small and neglected, the stored energy in the
resonator, Uthy, is given by integrating the square of Eq. (A1) in the
entire resonator region as
2 20 22 2 2
a“nfi(por)”(a”B° + mpo1~)eoEo
16Bpo1” '

In the CEMC, the electric field in the CEMC component is
represented by the coaxial waveguide modes as

In( m/ Out) cos(ko(z —m/(2B)))er

+> e M (p, 9,2), (A3)

Urm = (A2)

Ecemc(p, ¢, 2) =

where V, is the Voltage betwee_:n the n- and (n + 1)-th fins with n
counted from inside, r3™ and ) are the outer radius of nth fin and
the inner radius of (n + 1)th fin, respectively, and e5" s represents
higher order modes of the coaxial waveguide. Due to the field con-
tinuity at the boundary z = $/(27), the fundamental mode between
the n- and (n + 1)-th fins is rewritten with Eq. (A1) as

o <0kl 7/ 2B)e

= Eo[ Bk: "1 (kep) cos(ko(z — 1/ (2B) ) e,]
+ Z [ (p. 0. B/ (27))

CEMC(wﬁ/@n))]cos(ko(z 7/(26))).  (Ad)

Therefore, the field energy between the n- and (n+1)-th fins,

uSEMC, is calculated as

CEMC / fZﬂ/n/(Zﬂ)+n/(2ku)
W B/ (2m)

x |Eopke " J1 (kep) cos(ko(z — m/(28)))[ ddd,  (A5)

where all the higher mode energies in the LEMC and CEMC compo-
nents are assumed to be sufficiently small and neglected. Assuming
that the CEMC fin thickness is infinitely small, the total CEMC

energy, UCEMC is calculated as
{yCEMC _ Z JCEMC _ a'Broly (pOIZ)ZEOEOZ. (A6)
7 32po1
Therefore, the TM energy ratio arym is
U o)
oy = JCEMC a“B’Ao (A7)

Ul 2n(@F +pon)’
The electric field of the TE mode in the LEMC region can be
represented by taking into account the field continuity at p = a as
EoJ1(kep) cos(Bz)e,
EoJ1(kea) cos(ke(p —a)) cos(Bz)e, (a<p<a+diemc).
(A8)

(0<p<a),
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The stored energy in the resonator region 0<p<a, U, is
given by integrating the square of Eq. (A8) in the entire resonator
region as

an*h (por )2601502
88 '
Cor

The stored energy inside the corrugation, Uty is calculated with the
corrugation duty Do from Eq. (A8) as

Ut = (A9)

> (1 = Deor)J1 (por ) *e0Eo®

Utg = A10
TE 168p0r (A10)
From Egs. (A9) and (A10), the energy ratio ate is given as
Uy (1-D
apg = 18 _ (1= Deor)7r (A11)

S oun 2po1
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