4 research outputs found

    16S rRNA Gene-based Analysis of Fecal Microbiota from Preterm Infants with and without Necrotizing Enterocolitis

    Get PDF
    Neonatal necrotizing enterocolitis (NEC) is an inflammatory intestinal disorder affecting preterm infants. Intestinal bacteria play a key role; however no causative pathogen has been identified. The purpose of this study was to determine if there are differences in microbial patterns which may be critical to the development of this disease. Fecal samples from twenty preterm infants, ten with NEC and ten matched controls (including four twin pairs) were obtained from patients in a single site Level III neonatal intensive care unit. Bacterial DNA from individual fecal samples were PCR amplified and subjected to terminal restriction fragment length polymorphism analysis and library sequencing of the 16S rRNA gene to characterize diversity and structure of the enteric microbiota. The distribution of samples from NEC patients distinctly clustered separately from controls. Intestinal bacterial colonization in all preterm infants was notable for low diversity. Patients with NEC had even less diversity, an increase in abundance of Gammaproteobacteria, a decrease in other bacteria species, and had received a higher mean number of previous days of antibiotics. Our results suggest that NEC is associated with severe lack of microbiota diversity which may accentuate the impact of single dominant microorganisms favored by empiric and wide-spread use of antibiotics

    Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum β-lactamase producing Enterobacteriaceae recovered from fecal specimens of animals.

    No full text
    Colonization of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae as animal gut microbiota is a substantial global threat. This study aimed to determine the molecular characterization of blaSHV, blaTEM, and blaCTX-M variants in animals, as well as to evaluate the antimicrobial resistance conferred by these genes. We prospectively analyzed 1273 fecal specimens of farm and domestic animals for the isolation of enterobacteria that had the ESBL phenotype by using biochemical methods. The extracted genes were amplified by polymerase chain reaction and sequenced for the characterization of blaSHV, blaTEM, and blaCTX-M variants. The drug-resistance spectrum and hierarchical clusters were analyzed against 19 antibacterial agents. Out of 245 (19.2%) ESBL enterobacteria, 180 (75.5%) Escherichia coli and 34 (13.9%) Klebsiella pneumoniae were prevalent species. A total of 73.9% blaCTX-M, 26.1% blaTEM, and 14.2% blaSHV were found among the enterobacteria; however, their association with farm or domestic animals was not statistically significant. The distribution of bla gene variants showed the highest number of blaCTX-M-1 (133; 54.3%), followed by blaCTX-M-15 (28; 11.4%), blaTEM-52 (40; 16.3%), and blaSHV-12 (22; 9%). In addition, 84.5% of the enterobacteria had the integrons intI1. We observed ±100% enterobacteria resistant to cephalosporin, 7 (2.9%) to colistin (minimum inhibitory concentration breakpoint ≥4 μg/mL), 9 (3.7%) to piperacillin-tazobactam, 11 (4.5%) to imipenem, 14 (5.7%) to meropenem, and 18 (7.3%) to cefoperazone-sulbactam, without statistically significant association. Animal gut microbiota contain a considerable number of blaCTX-M, blaTEM, blaSHV, and integrons, which are a potential source of acquired extensive drug resistance in human strains and leaves fewer therapeutic substitutes
    corecore