42 research outputs found

    Greenhouse Energy Consumption for Rose Production in Different Regions of Portugal: Importance of Set-Points Definition and Energy Used

    Get PDF
    In this work results of an energy consumption study for rose production in multi-tunnel greenhouses, located in Porto (Pedras Rubras), Marinha Grande, Dois Portos, Zambujeira, Faro, Funchal and Ponta Delgada, are presented. The greenhouse considered with a surface area of about 1 ha had galvanised steel structure and was covered with three layer co-extruded plastic films. It was equipped with a hot water heating system, natural ventilation through lateral and roof openings, shadow screens and an evaporative cooling system. A Greenhouse Climate Simulator (GCS) was used to analyse the energetic behaviour in the different regions. The GCS used monthly mean data measured over several years for solar radiation, temperature, wind speed and relative humidity. A climate generator was used to obtain the mean hourly climate data of a typical day for each month and location. As inputs the GCS requires data related with greenhouse characteristics, environmental control equipments and crop. Simulation results show the hourly trend of climatic and technological variables, such as heating, cooling power, etc. For the energy balance a static complex model was used which is based on heat and mass transfer processes. The model considers the following components: heat gains due to the heating system, heat gains due to the solar radiation, heat transfer by convection and conduction through the cover, heat losses by evapotranspiration, heat losses due to the cooling system, heat intercepted by the shadow screen and heat transfer by natural ventilation. The results show the energy consumption due to the heating system in each of the studied locations, as well the heat dissipated by the cooling system during an average year. For this study, a heating period was considered and two temperature set-points were chosen. A brief economic analysis of energy management is also presented, considering location, temperature set-point and energy source, for year-round production of cut roses in Portugal

    Effect of the MC1R gene on sexual dimorphism in melanin-based colorations.

    Get PDF
    Variants of the melanocortin-1 receptor (MC1R) gene result in abrupt, naturally selected colour morphs. These genetic variants may differentially affect sexual dimorphism if one morph is naturally selected in the two sexes but another morph is naturally or sexually selected only in one of the two sexes (e.g. to confer camouflage in reproductive females or confer mating advantage in males). Therefore, the balance between natural and sexual selections can differ between MC1R variants, as suggest studies showing interspecific correlations between sexual dimorphism and the rate of nonsynonymous vs. synonymous amino acid substitutions at the MC1R. Surprisingly, how MC1R is related to within-species sexual dimorphism, and thereby to sex-specific selection, has not yet been investigated. We tackled this issue in the barn owl (Tyto alba), a species showing pronounced variation in the degree of reddish pheomelanin-based coloration and in the number and size of black feather spots. We found that a valine (V)-to-isoleucine (I) substitution at position 126 explains up to 30% of the variation in the three melanin-based colour traits and in feather melanin content. Interestingly, MC1R genotypes also differed in the degree of sexual colour dimorphism, with individuals homozygous for the II MC1R variant being 2 times redder and 2.5 times less sexually dimorphic than homozygous individuals for the VV MC1R variant. These findings support that MC1R interacts with the expression of sexual dimorphism and suggest that a gene with major phenotypic effects and weakly influenced by variation in body condition can participate in sex-specific selection processes

    Molecular evolution of the proopiomelanocortin system in Barn owl species.

    Get PDF
    Examination of genetic polymorphisms in outbred wild-living species provides insights into the evolution of complex systems. In higher vertebrates, the proopiomelanocortin (POMC) precursor gives rise to α-, β-, and γ-melanocyte-stimulating hormones (MSH), which are involved in numerous physiological aspects. Genetic defects in POMC are linked to metabolic disorders in humans and animals. In the present study, we undertook an evolutionary genetic approach complemented with biochemistry to investigate the functional consequences of genetic polymorphisms in the POMC system of free-living outbred barn owl species (family Tytonidae) at the molecular level. Our phylogenetic studies revealed a striking correlation between a loss-of-function H9P mutation in the β-MSH receptor-binding motif and an extension of a poly-serine stretch in γ3-MSH to ≥7 residues that arose in the barn owl group 6-8 MYA ago. We found that extension of the poly-serine stretches in the γ-MSH locus affects POMC precursor processing, increasing γ3-MSH production at the expense of γ2-MSH and resulting in an overall reduction of γ-MSH signaling, which may be part of a negative feedback mechanism. Extension of the γ3-MSH poly-serine stretches ≥7 further markedly increases peptide hormone stability in plasma, which is conserved in humans, and is likely relevant to its endocrine function. In sum, our phylogenetic analysis of POMC in wild living owls uncovered a H9P β-MSH mutation subsequent to serine extension in γ3-MSH to 7 residues, which was then followed by further serine extension. The linked MSH mutations highlight the genetic plasticity enabled by the modular design of the POMC gene

    Measurements of CO2 exchange over a woodland savanna (Cerrado Sensu stricto) in southeast Brasil

    Full text link
    The technique of eddy correlation was used to measure the net ecosystem exchange over a woodland savanna (Cerrado Sensu stricto) site (Gleba Pé de Gigante) in southeast Brazil. The data set included measurements of climatological variables and soil respiration using static soil chambers. Data were collected during the period from 10 October 2000 to 30 March 2002. Measured soil respiration showed average values of 4.8 molCO2 m-2s-1 year round. Its seasonal differences varied from 2 to 8 molCO2 m-2s-1 (Q10 = 4.9) during the dry (April to August) and wet season, respectively, and was concurrent with soil temperature and moisture variability. The net ecosystem CO2 flux (NEE) variability is controlled by solar radiation, temperature and air humidity on diel course. Seasonally, soil moisture plays a strong role by inducing litterfall, reducing canopy photosynthetic activity and soil respiration. The net sign of NEE is negative (sink) in the wet season and early dry season, with rates around -25 kgC ha-1day-1, and values as low as 40 kgC ha-1day-1. NEE was positive (source) during most of the dry season, and changed into negative at the onset of rainy season. At critical times of soil moisture stress during the late dry season, the ecosystem experienced photosynthesis during daytime, although the net sign is positive (emission). Concurrent with dry season, the values appeared progressively positive from 5 to as much as 50 kgC ha-1day-1. The annual NEE sum appeared to be nearly in balance, or more exactly a small sink, equal to 0.1 0.3 tC ha-1yr-1, which we regard possibly as a realistic one, giving the constraining conditions imposed to the turbulent flux calculation, and favourable hypothesis of succession stages, climatic variability and CO2 fertilization

    Patterns of phenotypic variation reveal substantial differentiation in sexual dimorphism of three Psammodromus (Squamata, Lacertidae) species

    Get PDF
    The Spanish sand racer (Psammodromus hispanicus) has been recently split into three distinct species: P. hispanicus, P. edwardsianus, and P. occidentalis. Some morphological differences have been reported but there is as yet no description allowing unambiguous identification of the three species. Here, we describe differentiation in body measurements, scalation traits, and colour traits as well as in the degree of sexual dimorphism. Our results show that P. edwardsianus can be easily distinguished by the presence of a supralabial scale below the subocular scale, which is absent in the other two species. Psammodromus hispanicus and P. occidentalis can be distinguished by the number of femoral pores, throat scales and ocelli, and the relative width of the anal scale. The degree of sexual size dimorphism and sexual colour dimorphism substantially differs among species, suggesting that different scenarios of sexual and natural selection may exist for each species. Moreover, sexually selected traits (nuptial colouration, ocelli, and femoral pores) significantly differ among species, suggesting that visual and chemical communication may also differ among species. Such differences could prevent reproduction and gene flow at secondary contact zones, potentially reinforcing isolation and speciation within this group of lizards

    Genomics of coloration in natural animal populations.

    No full text
    Animal coloration has traditionally been the target of genetic and evolutionary studies. However, until very recently, the study of the genetic basis of animal coloration has been mainly restricted to model species, whereas research on non-model species has been either neglected or mainly based on candidate approaches, and thereby limited by the knowledge obtained in model species. Recent high-throughput sequencing technologies allow us to overcome previous limitations, and open new avenues to study the genetic basis of animal coloration in a broader number of species and colour traits, and to address the general relevance of different genetic structures and their implications for the evolution of colour. In this review, we highlight aspects where genome-wide studies could be of major utility to fill in the gaps in our understanding of the biology and evolution of animal coloration. The new genomic approaches have been promptly adopted to study animal coloration although substantial work is still needed to consider a larger range of species and colour traits, such as those exhibiting continuous variation or based on reflective structures. We argue that a robust advancement in the study of animal coloration will also require large efforts to validate the functional role of the genes and variants discovered using genome-wide tools.This article is part of the themed issue 'Animal coloration: production, perception, function and application'

    Corticosterone regulates multiple colour traits in Lacerta [Zootoca] vivipara males.

    No full text
    Ornamental colours usually evolve as honest signals of quality, which is supported by the fact that they frequently depend on individual condition. It has generally been suggested that some, but not all types of ornamental colours are condition dependent, indicating that different evolutionary mechanisms underlie the evolution of multiple types of ornamental colours even when these are exhibited by the same species. Stress hormones, which negatively affect condition, have been shown to affect colour traits based on different pigments and structures, suggesting that they mediate condition dependence of multiple ornament types both among and within individuals. However, studies investigating effects of stress hormones on different ornament types within individuals are lacking, and thus, evidence for this hypothesis is scant. Here, we investigated whether corticosterone mediates condition dependence of multiple ornaments by manipulating corticosterone levels and body condition (via food availability) using a two-factorial design and by assessing their effect on multiple colour traits in male common lizards. Corticosterone negatively affected ventral melanin- and carotenoid-based coloration, whereas food availability did not affect coloration, despite its significant effect on body condition. The corticosterone effect on melanin- and carotenoid-based coloration demonstrates the condition dependence of both ornaments. Moreover, corticosterone affected ventral coloration and had no effect on the nonsexually selected dorsal coloration, showing specific effects of corticosterone on ornamental ventral colours. This suggests that corticosterone simultaneously mediates condition dependence of multiple colour traits and that it therefore accounts for covariation among them, which may influence their evolution via correlational selection

    Toward Understanding the Repeated Occurrence of Associations between Melanin-Based Coloration and Multiple Phenotypes.

    No full text
    Melanin is the most widespread pigment in organisms. Melanin-based coloration has been repeatedly observed to be associated with the same traits and in the same direction in different vertebrate and insect species. However, whether any factors that are common to different taxa account for the repeated evolution of melanin-phenotype associations remains unclear. We propose to approach this question from the perspective of convergent and parallel evolution to clarify to what extent different species have evolved the same associations owing to a shared genetic basis and being subjected to similar selective pressures. Our current understanding of the genetic basis of melanin-phenotype associations allows for both convergent and parallel evolution, but this understanding is still limited. Further research is needed to clarify the generality and interdependencies of the different proposed mechanisms (supergenes, pleiotropy based on hormones, or neural crest cells). The general ecological scenarios whereby melanin-based coloration is under selection-protection from ultraviolet radiation, thermoregulation in cold environments, or as a signal of social status-offer a good opportunity to study how melanin-phenotype associations evolve. Reviewing these scenarios shows that some traits associated with melanin-based coloration might be selected together with coloration by also favoring adaptation but that other associated traits might impede adaptation, which may be indicative of genetic constraints. We therefore encourage further research on the relative roles that selection and genetic constraints play in shaping multiple melanin-phenotype associations. Placed into a phylogenetic context, this will help clarify to what extent these associations result from convergent or parallel evolutionary processes and why melanin-phenotype associations are so common across the tree of life

    Reply to: Lunar illuminated fraction is a poor proxy for moonlight exposure.

    No full text
    corecore