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Abstract

Examination of genetic polymorphisms in outbred wild-living species provides insights into

the evolution of complex systems. In higher vertebrates, the proopiomelanocortin (POMC)

precursor gives rise to α-, β-, and γ-melanocyte-stimulating hormones (MSH), which are

involved in numerous physiological aspects. Genetic defects in POMC are linked to meta-

bolic disorders in humans and animals. In the present study, we undertook an evolutionary

genetic approach complemented with biochemistry to investigate the functional conse-

quences of genetic polymorphisms in the POMC system of free-living outbred barn owl spe-

cies (family Tytonidae) at the molecular level. Our phylogenetic studies revealed a striking

correlation between a loss-of-function H9P mutation in the β-MSH receptor-binding motif

and an extension of a poly-serine stretch in γ3-MSH to�7 residues that arose in the barn

owl group 6–8 MYA ago. We found that extension of the poly-serine stretches in the γ-MSH

locus affects POMC precursor processing, increasing γ3-MSH production at the expense of

γ2-MSH and resulting in an overall reduction of γ-MSH signaling, which may be part of a

negative feedback mechanism. Extension of the γ3-MSH poly-serine stretches�7 further

markedly increases peptide hormone stability in plasma, which is conserved in humans, and

is likely relevant to its endocrine function. In sum, our phylogenetic analysis of POMC in wild

living owls uncovered a H9P β-MSH mutation subsequent to serine extension in γ3-MSH to

7 residues, which was then followed by further serine extension. The linked MSH mutations

highlight the genetic plasticity enabled by the modular design of the POMC gene.

Introduction

In higher vertebrates, the melanocortin system is involved in numerous physiological aspects

such as energy homeostasis, steroidogenesis, exocrine secretion, sexual function, and pigmen-

tation [1–3]. The evolutionarily conserved melanocortin system comprises corticotropin
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releasing factor (CRF), the proopiomelanocortin (POMC)-derived peptides α-, β-, and γ-

melanocyte-stimulating hormones (MSH), adrenocorticotropic hormone (ACTH), the G

protein-coupled seven-transmembrane melanocortin receptors (MC1-5R), as well as the

melanocortin antagonists agouti and agouti-related protein. The POMC precursor displays a

modular organization that is highly conserved among tetrapods. Processing of POMC

through cleavage at dibasic motifs primarily occurs in the pituitary, where proprotein con-

vertase (PC)1/3-expressing corticotropic cells produce pro-γ-MSH, ACTH and β-lipotropin

(β-LPH). PC1/3- and PC2-expressing melanotropic cells further process the PC1/3 cleavage

products to α-, β-, γ3-and γ2-MSH, as well as corticotropin-like intermediate peptide

(CLIP), γ-lipotropin (γ-LPH) and β-endorphin (β-end) [4, 5]. The α-, β-, and γ-MSH forms

are highly conserved between species, share a common receptor-binding motif HFRW, and

can signal with varying efficacy through MC1R, MC3R, MC4R and MC5R, whereas MC2R

can only be activated by ACTH [3]. Pituitary cleavage products are released into the blood-

stream and delivered to peripheral tissues, where they activate MCR. In the brain, sequential

POMC processing by PC1/3 and PC2 occurs in neurons of the hypothalamus and brain

stem, leading to the release of MSH peptides, which act as neuromodulators in autocrine and

paracrine manner.

POMC expressing neurons in the arcuate nucleus of the hypothalamus are central to energy

homeostasis. Release of MSH peptides in their target projection area, the paraventricular

nucleus, leads to activation of post-synaptic MC4R, which ultimately results in a reduction of

food-intake [6–8]. POMC and MSH deficiencies, as well as MC4R deficiencies/mutations or

pharmacological blockade of MC4R have been linked to hyperphagia and obesity, increased

lipid up-take, triglyceride synthesis and fat accumulation in white adipose tissue in animals

and humans [9–16].

Over the past 15 years, we performed an in-depth genetic analysis of the melanocortin

system in a wild-living, outbred population of the European barn owl Tyto alba alba (TA) in

Switzerland. Tyto alba alba is a very interesting species from an evolutionary ecology point

of view: it is cosmopolitan, efficiently reproduces with several breeding attempts per year,

displays highly variable coloration phenotypes and shows complex social behavior, which

make it particularly suitable to analyze covariation of melanocortin linked phenotypes [1,

17]. When sequencing the POMC gene in a Swiss population of TA we now discovered that

all tested individuals carried a homozygous H9P mutation in β-MSH that changed its recep-

tor-binding site from HFRW to PFRW, likely impeding its function. Rather unexpected,

affected animals showed no overt phenotype, specifically, no signs and symptoms of obesity,

despite the fact that POMC mutations affecting production and/or function of β-MSH are

associated with obesity in human [11–15]. Interestingly, the β-MSH H9P mutation in TA is

associated with a remarkable polymorphism in the γ3-MSH locus, namely a microsatellite

sequence of 10–24 AGC repeats, translating into poly-serine stretches. Intrigued by the

apparent association between the β-MSH H9P mutation and the polymorphism in the

γ3-MSH locus, we established a phylogenetic tree for Tytonidae species with a worldwide

distribution [18], and determined their POMC sequences. We were able to trace the origins

of the two POMC polymorphisms and provide evidence for a genetic link. At the functional

level, we demonstrate that the β-MSH H9P mutation results in loss of receptor signaling.

Extension of the poly-serine stretches in the γ-MSH locus lead to an increase in γ3-MSH lev-

els at the expense of γ2-MSH, reducing the overall γ-MSH signaling, possibly as part of a neg-

ative feedback mechanism. Extension of the γ3-MSH poly-serine stretches�7 further

markedly increases peptide hormone stability in plasma, likely affecting its endocrine

function.
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Material and methods

Synthetic MSH peptides used in MCR signaling assays

SA β-MSH H9: AGGSYRMRHFRWHAPLKD (GenScript USA Inc., Piscataway, New Jersey,

USA); SA β-MSH P9: AGGSYRMRPFRWHAPLKD (GenScript USA Inc.); TA β-MSH P9:

AGGSHRVRPFRWHAPLKD (GenScript USA Inc.); TA β-MSH H9: AGGSHRVRHFR-

WHAPLKD (GenScript USA Inc.); TA β-MSH P9, Y5: AGGSYRVRPFRWHAPLKD (Gen-

Script USA Inc.); TA β-MSH P9, M7: AGGSHRMRPFRWHAPLKD (GenScript USA Inc.);

SA / TA γ2-MSH: YVMSHFRWNKFG, C-terminus amidated (GenScript USA Inc.); SA

γ3-MSH 3 S: YVMSHFRWNKFGRRNSSSGGGGGH (GenScript USA Inc.); TA γ3-MSH 18S:

YVMSHFRWNKFGRRNSSSSSSSSSSSSSSSSSSGGH (GenScript USA Inc.); TA γ3-MSH 7 S:

YVMSHFRWNKFGRRNSSSSSSSGGH (Top-peptide Co., Ltd, Shanghai, China); TA γ3-MSH

11 S: YVMSHFRWNKFGRRNSSSSSSSSSSSGGH (Top-peptide Co., Ltd); TA γ3-MSH 13 S:

YVMSHFRWNKFGRRNSSSSSSSSSSSSSGGH (Top-peptide Co., Ltd, Shanghai, China); TA

γ3-MSH 19S: YVMSHFRWNKFGRRNSSSSSSSSSSSSSSSSSSSGGH (Top-peptide Co., Ltd);

TA γ3-MSH 5 S: YVMSHFRWNKFGRRNSSSSSGGH (SynPeptide CO., LTD, Shanghai,

China); TA γ3-MSH 10 S: YVMSHFRWNKFGRRNSSSSSSSSSSGGH (SynPeptide CO., LTD);

human β-MSH H9 (wt): DEGPYRMEHFRWGSPPKD-NH2 (Top-peptide Co., Ltd, Shanghai,

China); human β-MSH P9: DEGPYRMEPFRWGSPPKD-NH2 (Top-peptide Co., Ltd, Shang-

hai, China); human β-MSH C5: DEGPCRMEHFRWGSPPKD-NH2 (Top-peptide Co., Ltd,

Shanghai, China); human β-MSH L15: DEGPYRMEHFRWGSLPKD-NH2 (Top-peptide Co.,

Ltd, Shanghai, China); human γ2-MSH: YVMGHFRWDRFG-NH2 (Top-peptide Co., Ltd,

Shanghai, China); human γ3-MSH (wt): YVMGHFRWDRFGRRNSSSSGSSGAGQ (Top-pep-

tide Co., Ltd, Shanghai, China); human γ3-MSH SSG SSG: YVMGHFRWDRFGRRNSSSSG

SSGSSGSSGAGQ (Top-peptide Co., Ltd, Shanghai, China); human γ3-MSH SSG: YVMGH

FRWDRFGRRNSSSSGSSGSSGAGQ (SynPeptide CO., LTD, Shanghai, China). All peptides

were delivered in lyophilized form and had� 98% purity. After resuspension of synthetic

peptides in H2O, exact MSH concentrations were determined in stock solutions by UV-

adsorption.

Reconstruction of the phylogenetic tree of Tytonidae

Genomic DNA was extracted from blood, feathers and footpads of Tytonidae kindly donated

by different museum collections around the world and from blood of wild populations of SA

and TA using the DNAeasy Blood and Tissue kit (Qiagen, Hombrechtikon, Switzerland). The

phylogenetic analysis was based on a subset of 34 owl taxa, five mitochondrial genes (a total

length of 2796 bp comprising cytochrome oxidase 1, 16S rRNA, control region, cytochrome B,

and mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 6), and two

nuclear genes (a total length of 1497 bp comprising c-MOS and RAG1) [18]. Preceding the

phylogenetic analysis, best-fit substitution models were estimated for each gene, with MrMo-

deltest 2.0 [19], using the Akaike information criterion [20]. The molecular phylogeny was

computed using Bayesian Inference (BI) with BEAST v.1.8.4 [21]. Divergence times were esti-

mated based on prior knowledge about the split age (ca. 45 mya) between Tytonidae and Stri-

gidae (Strix aluco SA), taken from a study that used a large sampling of birds and fossil

calibrations to date the phylogeny [22]. The analysis was run under an uncorrelated relaxed

lognormal clock model, and a birth-and-death tree model. A mean substitution rate of 0.016

was used for mitochondrial DNA, and 0.00135 for nuclear DNA [23]. Standard deviations

were set as 0.005 and 0.0005 for mitochondrial and nuclear DNA, respectively. A normal dis-

tribution prior was set on the root of the tree, with a mean of 45 and standard deviation of 2.5.
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Improper default priors (1/x) were replaced by proper weakly informative priors (exponential

distribution with mean 1). The MCMC chain was run for 200 million generations sampled

every 20.000 generations. Tracer v1.6.0 [24] was used to confirm chain convergence and effec-

tive sample size (ESS) values of all parameters. The maximum credibility tree and the 95%

highest posterior density (95% HPD) distributions for all tree nodes were generated on

TreeAnnotator v1.8.2 [21], with a burn-in of 10% of the trees. The final was visualised on Fig-

Tree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree).

Genotyping of γ3-MSH and β-MSH loci in POMC of Tytonidae

Genomic DNA from Tytonidae blood, feathers or footpads was used to identify γ-MSH and β-

MSH sequences after PCR amplification of the corresponding POMC fragments. For the Swiss

(Tyto alba alba) and Israeli (Tyto alba erlangeri) populations, we collected blood samples or

feathers during the breeding season and genotyped all individuals followed between 1999 and

2018 (n = 5852), and 2009 and 2012 (n = 1439), respectively [25]. For blood drawing, we punc-

tured the brachial vein, collected 50 μl blood samples with heparinized capillaries, and imme-

diately stored samples on dry ice for transport. For long term storage, samples were kept at

-80˚C until DNA extraction.

A 500 bp fragment was PCR amplified within exon 3 of the POMC gene covering the γ-

MSH, ACTH and β-MSH loci. The amplicons of each individual were purified with MinElute

PCR purification kit (Qiagen, Hombrechtikon, Switzerland). PCR products were then directly

sequenced (Microsynth Balgach, Switzerland) or, if heterozygous for γ3-MSH, TA-cloned in

pGEMT (Promega, Duebendorf, Switzerland) prior to sequencing. Sequences were aligned

with CodonCode Aligner 3.7.1.2 (CodonCode Corporations, Dedham, MA, USA) and the

number of serine repeats in γ3-MSH determined. If the material was of low quality (e.g., old

museum footpads), γ3-MSH and β-MSH spanning fragments were separately amplified and

sequenced. Once the serine repeats were characterized for the different taxa, additional indi-

viduals of Tyto alba (T. a.) alba (Europe), T. a. affinis (Africa), T. a. erlangeri (Middle East), T.

javanica javanica (south-east Asia), T. j. delicatula (Australia) and T. furcata pratincola (North

America) were genotyped to determine their precise poly-serine microsatellite length. To this

end, the γ3-MSH locus was amplified with fluorescin labeled primers and PCR fragments were

analyzed with an ABI 3100 sequencer using the GeneScanTM ROX 350TM size standard. Serine

repeat lengths were assigned by GENEMAPPER 4.0 (Life Technologies, Thermo Fisher Scien-

tific Schweiz AG, Reinach, Switzerland). Genbank accession numbers for the POMC sequences

of the individual taxa are given in S1 Table. S3 Table provides information on the museum

samples used in this study for POMC genotyping.

POMC, PCSK1 and PCSK2 gene expression analysis in different tissues of

Tyto alba alba
Bursa, liver, heart, intestine, thoracic muscle, testis, growing back and breast feathers, pituitary

gland, hypothalamus, cortex and cerebellum were sampled from a 57-day-old nestling barn

owl (TA) that had died in its nest for unknown reasons. Dissected tissue was immediately

transferred to dry ice and then kept at -80˚C. Between 20 and 120 mg of the different tissue

sample were bead-homogenized at 4˚C with Trizol (Life Technologies) in a MagNA Lyser

(Hoffmann-La Roche Ltd., Basel, Switzerland) at 6500 rpm for 3x 30 sec. Total RNA was

extracted from tissue homogenates using the RNeasy kit (Qiagen) and 5 μl aliquots were

diverted to assess quantity and quality with a Qubit fluorometer (Life technologies) and Frag-

ment analyzer (Advanced analytical, Labgene, Switzerland). Only total RNA samples with a

RQN> 9.0 were used to quantify gene expression. The expression of POMC, PCSK1 and
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PCSK2 genes was measured by RT-qPCR using Elongation factor 1A (EEF1A, KU712278) and

ribosomal protein L13 (RPL13, KU712291) as reference genes as previously described [26].

Amplification efficiencies for POMC, PCSK1 and PCSK2 cDNA were 98.5%, 100% and 104%.

Identification of cDNA sequences coding for Tyto alba alba POMC, PC1/3,

PC2,MC3R andMC4R, and for Strix aluco POMC
Total RNA was isolated from the brain extract of the previously described nestling barn owl

(TA), using RNeasy kit (Qiagen). One μg total RNA was subjected to RNA-ligase-mediated

(RLM) oligo capping (GeneRacer kit, Life Technologies) to then selectively reverse-transcribe

the full length mRNA transcripts using 200 U/μl SuperScript™ III RT and 2.5 μM GeneRacer™
Oligo dT Primer in a 20 μl reaction. After RNase H treatment, 10% of the produced RACE-

ready first-strand cDNA were used to amplify the desired TA cDNA fragments in a polymer-

ase chain reaction (PCR) with a combination of gene specific primers and GeneRacerTM 5’

and 3’ primers. After subcloning, sequences were determined and aligned to yield full length

coding sequences (CDS). Sequences for TA PCSK1 and PCSK2 mRNA are published under

genbank accession numbers KU712308-9 and KU712310, respectively (San-Jose et al., 2017).

The TA full length POMC CDS spreading over exons 2 and 3 was inferred from the genomic

sequence in combination with 5’RACE on brain RNA using POMC specific primers (San-Jose

et al., 2017, genbank accession number KU712269.1). The TA MC3R and MC4R one exon

genes could be sequenced from genomic DNA with a genome walking approach (Genome-

Walker universal kit, Clontech, Takara Bio Europe/Clontech, Saint-Germain-en-Laye,

France). The following external primers were used to determine their sequences: MC3R_

239Fw: 5’-GAA GAG CAG CCT GTG ACT GAC AAA AA-3’, MC3R_1273Rev: 5’-GTA
GCA TTC CCT TTC CGG ATT CAT TT-3’ and MC4R_584Fw: 5’-GCT CGT GCT GCA
TCT GAA TCT ACT GT-3’, MC4R_1057Rev: 5’-AGG ATC TGA AGG CTT GGA AGT
CTG TG-3’. The newly identified mRNA sequences for TA MC3R and MC4R are registered

under accession numbers KY189305 and KY189307-8, respectively. The SA POMC mRNA

sequence was determined with analogous methods as described [27] (Accession number:

KF201581).

Cloning of Tyto alba alba MC3R,MC4R, PCSK1 and PCSK2
Tyto alba alba MC3R, MC4R, PCSK1 and PCSK2 were PCR amplified from barn owl reverse-

transcribed total RNA thereby adding a V5-tag to the N-terminus of both MCR isoforms and a

myc-tag to the C-terminus of both PCSK isoforms. PCR products were inserted into expression

vector pcDNA 3.1 IntA containing the human cytomegalovirus (CMV) promoter (kindly pro-

vided by Dr. Robert Garry, Tulane University). Untagged human MC3R (genbank accession

number NM_019888) and MC4R (genbank accession number NM_005912) were expressed

from plasmid pCMV6-XL4 (OriGene Technologies, Inc., Rockville, Maryland, USA).

Synthesis and cloning of Tyto alba alba (TA) and Strix aluco (SA) POMC
The different TA POMC cDNA variants with 3, 5, 7, 10 and 18 serine residues and the SA

cDNA variants with 3 and 18 serine residues were commercially synthesized (GenScript USA

Inc., Piscataway, New Jersey, USA) according to the cDNA sequence information obtained

from the above analyses. A Kozak sequence was added upstream of the start codon, an HA tag

(YPYDVPDYA) inserted downstream of the signal peptides MPLWSSLPVVLGLLLWHLA-

GASGP and MASALWGSLPVVLGLLLWHPAGASGP in SA and TA POMC, respectively,

and a V5 tag (GKPIPNPLLGLDST) was added to the C-terminus upstream of the stop codon.

POMC variants with differing numbers of serine repeats were produced by introduction of the
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according numbers of AGC codons in the γ3-MSH locus. HA- and V5-tagged POMC cDNAs

were cloned into the expression vector pcDNA 3.1 IntA.

Cloning of Tyto alba alba (TA) N-terminal POMC ladder fragments

The pcDNA 3.1 IntA plasmids coding for N-terminally HA-tagged TA full length POMC with 3,

5, 7, 10 or 18 serine residues (see above) served as templates for PCR-amplification of the N-termi-

nally HA-tagged TA POMC cleavage site 3 fragments with 3, 5, 7, 10 and 18 serine residues,

respectively, and also for amplification of N-terminally HA-tagged POMC cleavage site 2 fragment.

PCR products thus contained from N- to C-terminus: the POMC signal peptide, the HA tag, and

part of the mature POMC sequence comprising the N-terminal fragment and γ3-MSH in case of

cleavage site 3 fragments, and γ2-MSH in case of cleavage site 2 fragment, followed by the dibasic

cleavage motifs KR and RR, respectively. All PCR products were cloned into pcDNA 3.1 IntA.

Cloning of Strix aluco (SA) N-terminal POMC ladder fragments

SA N-terminal POMC ladder fragments with the wild-type sequence were produced from N-

terminally HA-tagged SA full length POMC template carrying 3 serine residues in the γ3-MSH

locus. SA HA-tagged POMC ladder fragments ended with the dibasic motif RK at cleavage site

1, RR at cleavage site 2, or KR at cleavage site 3 (3 serine residues in γ3-MSH locus) and thus

behind the POMC N-terminal fragment, γ2-MSH, or γ3-MSH, respectively. The SA N-termi-

nal POMC ladder fragments, which contained the amino acids EE instead of RK at cleavage

site 1 to prevent cleavage by endogenous basic PCs, were produced by PCR from a point

mutated N-terminally HA-tagged SA full length POMC template in analogy to the wild-type

versions. All PCR products were cloned into pcDNA 3.1 IntA.

In Vitro characterization of Tyto alba alba (TA) PC1/3 and PC2 activity

Human embryonic kidney cells containing the SV40 T-antigen (HEK293T) were obtained from

the American Type Culture Collection (ATCC, CRL-3216TM) and were grown in DMEM Glu-

taMaxTM medium (4.5 g/l D-Glucose, Gibco, Life Technologies) containing 10% Fetal Calf

Serum (FCS), 100 units/ml Penicillin and 100 μg/ml Streptomycin, unless otherwise indicated.

HEK293T cells were calcium-phosphate transfected in triplicate with TA PCSK1 or PCSK2-

plasmid, in combination with either mouse 7B2- or IRES GFP-plasmid (1 μg of each of the two

plasmids per 3.8 cm2 well). Supernatants of mock-transfected cells (IRES GFP-plasmid only)

served as negative controls. Supernatants were harvested 56 h post transfection for the in vitro
assay and CaCl2 was added to a final concentration of 5 mM. The pH was adjusted to pH 5.5

with 88 mM acetate buffer. In case of investigation of the pH dependence of the two PCs, the

pH was adjusted to values between pH 4.1 and pH 8.1. Calcium dependence was analyzed in

the presence of 10 mM EDTA. The fluorogenic substrate Pyr-ERTKR-AMC (L-pyroglutamyl-

(arginine-threonine-lysine-arginine)-7-amino-3-methylcoumarin) was added to a final con-

centration of 10 μM. Cleavage induced fluorescence by the liberated AMC unit was measured

with a TriStar LB 941 reader using MikroWin 2000 software (Berthold Technologies, Switzer-

land). The slope in the phase of linear fluorescence increase (relative fluorescence units (RFU)/

min) was used as a read out for cleavage activity of the two basic PCs.

Analysis of Tyto alba alba (TA) and Strix aluco (SA) POMC cleavage by

Tyto alba alba PC1/3 and PC2

HEK293T cells were transfected with SA or TA POMC alone, or in combination with either

mouse 7B2 [28], mouse 7B2 and TA PCSK1, or mouse 7B2, TA PCSK1 and TA PCSK2. Plasmid
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mixes contained 1 μg each of the above plasmids, and were supplemented to a total of 4 μg

DNA with IRES GFP plasmid for calcium-phosphate transfection, or contained 0.5 μg plasmid

each, and were supplemented to a total of 2 μg DNA with IRES GFP plasmid for Lipofectamine

3000 transfection in 3.8 cm2 wells. SA POMC ladder fragments used to unambiguously iden-

tify bands in PC-cleaved SA POMC were calcium phosphate transfected at 1 μg/well in combi-

nation with mouse 7B2 plasmid (1 μg/well). Supernatants (1 ml/well) were harvested 56 h post

transfection for POMC cleavage product identification, and aliquots of supernatant were col-

lected between 28 h and 104 h post transfection to establish cleavage kinetics. Supernatants

were supplemented with dissolved Complete protease inhibitor mix (CompleteTM, Mini Prote-

ase Inhibitor Cocktail, F. Hoffmann-La Roche Ltd., Basel, Switzerland) and 6x reducing

Laemmli buffer (12% (w/v) SDS, 47% (v/v) glycerol, 0.06% (w/v) bromphenol-blue, 600 mM

DTT, 60 mM Tris-HCl, pH 6.8) to final concentrations of 1x. Samples were heated for 10 min

to 98˚C and frozen at -20˚C.

For cell lysate preparation, layers of transfected HEK293T cells were washed with PBS, and

250 μl ice cold CelLyticTM M buffer (Sigma-Aldrich GmbH, Buchs, Switzerland) containing 1x

protease inhibitor mix were added per well. Cells were lysed under agitation for 30 min at 4˚C,

cell slurry was transferred to Eppendorf tubes and cleared by 30 min centrifugation at 14000 g.

6x reducing Laemmli buffer was added to cleared lysates to a final concentration of 1x, samples

were heated for 10 min to 98˚C and frozen at -20˚C.

For Western blot analysis 10 μl to 30 μl samples of cell lysate and supernatant were sepa-

rated on 10%, 12% or 18% pre-cast NovexTM Tris-Glycine protein gels (Thermo Fisher Scien-

tific AG, Reinach, Switzerland) and were transferred to 0.45 μm pore-size nitrocellulose

membranes. Full-length POMC and N-terminal POMC ladder fragments were detected via

the N-terminal HA tag with rat monoclonal (clone 3F10) anti-HA high affinity antibody

(IgG1, 33 ng/ml, Roche Diagnostics GmbH, Mannheim, Germany), in combination with per-

oxidase-conjugated polyclonal rabbit anti-rat purified immunoglobulin fraction (433 ng/ml,

Dako Schweiz AG, Baar, Switzerland). PC1/3 and PC2 were detected via their C-terminal myc

tag with polyclonal rabbit anti-myc tag antibody (1: 1000, Cell Signaling TechnologyR, Bio-

Concept, Allschwil, Switzerland) and HRP-coupled polyclonal goat anti-rabbit IgG (1:3000,

Santa Cruz Biotechnology Inc., Heidelberg, Germany). Tubulin was used as a loading control

in cell lysates and was detected with mouse monoclonal (clone B-5-1-2) anti α-Tubulin IgG1

(1:3000, Sigma-Aldrich Chemie GmbH) in combination with peroxidase-conjugated poly-

clonal rabbit anti-mouse purified immunoglobulin fraction (433 ng/ml, Dako Schweiz AG).

The signal was developed in a chemiluminescence reaction with the enhanced sensitivity

Advansta Western BrightTM Siruius kit (Witec AG, Luzern, Switzerland). Blots were scanned

with a luminescence image analyzer (Image Quant Las 4000 mini) using the Image Quant Las

4000 program, version 1.2 (GE Healthcare AG, Glattbrugg, Switzerland).

Densitometric quantification of steady state levels of N-terminal cleavage

site 3 product in Western blot

16 bit gray scale Western blot images with a suitable exposure were selected and bands densito-

metrically quantified using ImageJ software (version 1.45s, Wayne Rasband, National Insti-

tutes of Health, USA, public domain). For analysis of the production efficiency of POMC N-

terminal cleavage site 3 fragment, the bands representing N-terminal cleavage site 5 and 3

products were jointly outlined (separately for each lane). For evaluation of the degradation

efficiency, bands representing N-terminal cleavage site 3 and 2 products were simultaneously

outlined. The density profiles were separately plotted for the two band combinations. The two

peaks corresponding to either band 5 and 3, or band 3 and 2 were delineated and pixel
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numbers determined in the area underneath the corresponding peaks. Pixel numbers were

then expressed as the percentage of total pixels measured for the two peaks together. In this

way, the relative pixel density of the two band pairs was determined. The relative pixel density

of band 3 was divided by the relative pixel density of band 5 as a measure for the production

efficiency, and the relative pixel density of band 2 was divided by the relative pixel density of

band 3, as a measure for the degradation efficiency. The production efficiency was subse-

quently divided by the degradation efficiency for each TA POMC variant with a defined num-

ber of serine residues and was normalized within the same blot to the quotient of production

and degradation efficiencies of TA POMC 3 S from the corresponding time point in the

expression kinetic.

Determination of the glycosylation status of Tyto alba alba (TA) and Strix
aluco (SA) POMC precursor

HEK293T cells were calcium phosphate transfected in 3.8 cm2 wells with 1 μg HA-tagged TA

POMC 18 S—or SA POMC 3 S plasmid, each in combination with 1 μg mouse 7B2 plasmid.

Supernatants were removed 49 h after transfection, cells were washed with PBS and cell lysates

were harvested in 250 μl ice cold CelLyticTM M buffer (Sigma-Aldrich GmbH) containing 1x

CompleteTM protease inhibitor mix (F. Hoffmann-La Roche Ltd.). Lysates were cleared by 30

min centrifugation at 14000 g and were then subjected to Endoglycosidase H (Endo H) or Pep-

tide:N-Glycosidase F (PNGase F) digests (New England Biolabs Inc., Bioconcept). To this end,

10 μl of 10 x glycoprotein denaturing buffer (5% SDS, 400 mM DTT) were added to 90 μl of

cleared lysate, and samples were boiled for 10 min. Denatured lysates were then split into four

20 μl aliquots and components required for Endo H or PNGase F treatment were added to

yield final digest volumes of 30 μl. Denatured lysates were also mock treated with buffers used

for Endo H and PNGase F digests with no enzymes added. The final EndoH digestion reaction

contained the 1.7 fold diluted lysate in 2.67 mM Tris-HCl, 6.67 mM NaCl, 0.67 mM EDTA,

0.33% SDS, 26.7 mM DTT, 50 mM sodium citrate, pH 5.5 with 66.7 units/μl Endo H. The final

PNGase F digestion reaction consisted of the 1.7 fold diluted lysate in 2 mM Tris-HCl, 5 mM

NaCl, 0.5 mM EDTA, 5% glycerol, 1% NP-40, 0.33% SDS, 26.7 mM DTT, 50 mM sodium

phosphate, pH 7.5 with 50 units/μl PNGase F. For deglycosylation, samples were incubated for

2 h at 37˚C. Deglycosylation was terminated by the addition of 5 μl 6x reducing Laemmli

buffer and boiling for 10 min. Mock-, Endo H and PNGase F treated lysates from cells over-

expressing TA or SA POMC were separated on 12% Tris-glycine gels and deglycosylation pat-

terns were analyzed in Western blot via the N-terminal HA tag.

Measurement of cAMP-signaling activities of synthetic β-MSH and γ-MSH

ligands on Tyto alba alba (TA) andHumanMC3R and MC4R

5 x 104 HEK293T cells were seeded per well in 100 μl medium in Costar 96 well clear bottom

plates (Corning Inc., New York, USA) and were transfected (lipofectamine 3000) with 1 ng TA

or Human MCR plasmid or IRES GFP control plasmid in combination with 100 ng pGloSen-

sorTM-20F cAMP plasmid (E1171, Promega Inc., Madison, Wisconsin, USA). Medium was

removed 24 hours after transfection and replaced with 100 μl/well serum-free, substrate equili-

bration medium composed of CO2-Independent Medium (18045–054, Gibco, Life Technolo-

gies) containing 2 mM glutamine and 2% (v/v) 50 x Glo-SensorTM cAMP Reagent (30.6 mg/

ml in10 mM HEPES (pH 7.5), Promega Inc.). Cells were incubated in equilibration medium

for 1.5 h at 37˚C and 5% CO2 to allow intracellular up-take of luciferase substrate. Prior to the

actual measurement of ligand-induced cAMP signaling, baseline equilibration was performed.

To this end luciferase activity was measured at 40 s intervals for 0.1 s each in a TriStar LB 941
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luminescence reader (Berthold Technologies, Switzerland), using MikroWin 2000 software.

Once a plateau was reached, synthetic MSH ligands were added and measurements were

immediately continued at 40 s intervals. The increase in the intracellular cAMP concentration

in response to MCR activation by MSH ligand was monitored as an increase in luminescence

over time. To establish dose response curves, MCR and Glo-sensor transfected cells were incu-

bated with serial dilutions of β-MSH or γ-MSH ligand ranging from 1 pM to 200 μM. Lumi-

nescence was also measured within the same plate in cells transfected with IRES GFP and Glo-

sensor, to account for non-MCR mediated cAMP signaling through endogenous G-protein

coupled cell surface receptors. The maximal luminescence reached after ligand addition was

identified in each well of MCR- and Glo-sensor transfected cells and was subtracted by the

value of baseline signaling measured in the plateau phase immediately before ligand addition.

Furthermore, the increment of baseline corrected non-MCR signaling was determined for the

same time point in wells with IRES GFP and Glo-sensor transfected cells, and was additionally

subtracted. These double corrected relative luminescence values (RLU) thus reflect the maxi-

mal luminescence response induced by MCR-specific ligand binding at a given ligand concen-

tration. To allow comparison between plates, RLU measurements for γ- and β-MSH peptides

were always normalized plate internally to the RLU obtained with γ2-MSH and β-MSH H9,

respectively, at their highest concentration (RLU of 1). Normalized RLUs were determined in

triplicate on 3 different plates for each ligand and concentration and dose response curves cal-

culated by non-linear regression curve fit (least square fit). In figure representations of dose

response curves mean RLU and their standard errors of the mean (SEM) are plotted against

LOG10 of the ligand concentration. In this way, ligand specific differences in the relative Emax.

can be appreciated.

For determination of EC50, RLU were normalized in a way that the smallest and highest

values in each ligand-specific data set were set to 0% and 100%, respectively, irrespective of the

actual maximal signaling amplitude. The percentage of RLU was then plotted against LOG10 of

the ligand concentration, and EC50 calculated from normalized dose response curves estab-

lished by non-linear regression curve fit (least square fit).

To evaluate the relative signaling strength of various γ-MSH forms on MC3R, EC50 were

calculated for each plate separately from normalized dose response curves, the inverse EC50

(1/EC50) was calculated for each ligand and normalized to the inverse EC50 of γ2-MSH. Sta-

tistical differences in the signaling strength were determined by unpaired t-test (n = 3,
�p< 0.05, ��p<0.01, ���p<0.001, ����p<0.0001).

Measurement of the signaling activity of cloned Tyto alba alba (TA) POMC
N-terminal cleavage site 2 and 3 fragments

HEK293T cells were transfected with plasmids coding for TA POMC N-terminal cleavage site

3 fragments with 3, 5, 7, 10 or 18 serine residues in the γ3-MSH locus, in combination with

mouse 7B2 plasmid (285 ng of each of the two plasmids per 1.9 cm2 well). Transfections were

performed in triplicate with Lipofectamine 3000. Supernatants (500 μl per well) were harvested

71 h post transfection, and frozen at -80˚C. Secretion of N-terminal POMC fragments into the

supernatant was confirmed in Western blot with anti-HA antibody. Bands were quantified

densitometrically using ImageJ software (version 1.45s). Bands from N-terminal cleavage site

2 fragment and from all cleavage site 3 fragments, including the major glycosylated and minor

non-glycosylated forms, were simultaneously outlined and the density profile was plotted

across lanes. Pixel numbers were determined underneath individual peaks corresponding to

the different N-terminal POMC fragment types. The resulting pixel densities were normalized

to the density of TA POMC cleavage site 2 fragment to determine the relative expression levels.
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Supernatants were then serially diluted in serum-containing medium. The cAMP signaling

activity was assessed for each dilution on TA MC3R and Glo-sensor transfected HEK293T

cells (1 ng MC3R plasmid and 100 ng Glo-Sensor plasmid/well in 96 well plates). Lumines-

cence measurements were simultaneously performed for the different types of N-terminal

POMC fragments from one transfection series (cleavage site 2 and cleavage site 3 fragments

with 3, 5, 7, 10 and 18 S), and transfection series 2 and 3 were analyzed in separate plates. Base-

line signaling was subtracted from maximal, N-terminal POMC fragment-induced lumines-

cence. Supernatant from mock-transfected cells (IRES GFP plasmid) served as negative control

to exclude unspecific MC3R signaling by serum components or secreted cellular factors. The

corrected maximal luminescence values were normalized in each transfection series to the

response obtained for TA POMC N-terminal cleavage site 2 fragment at its highest concentra-

tion. Furthermore, the relative concentrations of N-terminal POMC fragments in supernatants

were corrected for their relative expression levels determined by Western blot. The normal-

ized, relative cAMP signaling responses of TA POMC N-terminal cleavage site 2 and 3 frag-

ments with 3, 5, 7, 10 or 18 serine residues were then plotted against LOG10 of the corrected

relative concentrations. Relative EC50 for all POMC N-terminal fragments were determined

in triplicate from dose response curves of the three transfection series. The inverse relative

EC50, reflecting the relative signaling activity, was calculated and normalized to the inverse

relative EC50 of TA POMC cleavage site 2 fragment. Differences in the signaling activity of

TA POMC N-terminal cleavage site 2 and 3 fragments were analyzed by one way ANOVA

followed by Tukey’s multiple comparison test (n = 3, �p<0.05, ��p<0.01, ���p<0.001,
����p<0.0001).

Analysis of plasma and cerebrospinal fluid stability of different γ-MSH

forms

For studies on the plasma stability of TA/SA γ-MSH, lyophilized citrated plasma from a pool

of human donors was reconstituted in H2O as indicated by the manufacturer (# P9523, Sigma-

Aldrich Chemie GmbH). Stability of human γ-MSH peptides was evaluated in fresh frozen

human plasma (Interregional Blood Transfusion Swiss Red Cross Ltd, Epalinges, Swizerland).

To this end, pooled samples of complete EDTA blood were centrifuged for 10 min at 1300 g,

plasma was separated from buffy coat and erythrocytes and cleared by an additional 10 min

centrifugation step at 1300 g. Cerebrospinal fluid pooled from� 3 human donors was pro-

vided in liquid phase (# 991-19-P, Lee Biosolutions Inc., Maryland Heights, MO, USA). Ali-

quots of both body fluids were stored at -80˚C until use. Samples of reconstituted plasma or

CSF were thawed on ice, the pH of fresh frozen plasma was adjusted to 7.4 by addition of

triethanolamine to a final concentration of 50 mM, and 45 μl aliquots were distributed to 1.5

ml Protein LoBind Tubes (Eppendorf AG, Hamburg, Germany). The γ-MSH synthetic pep-

tides were pre-diluted in H2O to 20 μM, and 5 μl each were added on ice to 45 μl pre-laid sam-

ples of plasma or CSF. The γ-MSH starting concentration in degradation assays was thus

2 μM. Immediately after mixing, a first 5 μl aliquot for time point zero was removed, tubes

were then transferred to a 37˚C heat block, and further 5 μl aliquots were collected from

plasma and CSF samples after various incubation times up to 68 h and 72.5 h, respectively. For

control purposes, γ-MSH peptides were also diluted in H2O to a concentration of 2 μM and

aliquots were removed after the corresponding incubation times at 37˚C. All collected 5 μl ali-

quots were immediately diluted in 45 μl H2O and frozen on dry ice in 96 well V-bottom non-

binding microplates (Greiner Bio-One Vacuette Schweiz GmbH, St. Gallen, Schweiz) to stop

further degradation. After completion of degradation time courses, collection plates were

stored at -80˚C.
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The residual TA/SA or human γ-MSH signaling activities were simultaneously analyzed on

Glo-sensor and TA or human MC3R transfected HEK293T cells, respectively. 11 μl of diluted,

γ-MSH-containing plasma or CSF samples were transferred to 100 μl substrate equilibration

medium on transfected HEK293T cells in 96 well plates. Thus, for time point zero the final con-

centration of γ-MSH ligand on MC3R and Glo-Sensor expressing cells was 20 nM. Maximal

luminescence values for the residual γ-MSH ligand activities were determined for all time points

in the degradation time course, were baseline subtracted and normalized to the maximal lumi-

nescence value at time point zero for the same ligand in the same plate. All degradation time

courses were performed in triplicate and read on three separate 96 well plates. Mean values of the

relative residual signaling activities (RLU) were plotted against time. Degradation curves were

established by non-linear regression curve fit (least square fit) and half-lives determined from

one phase decay curves. Baseline signaling of plasma or CSF without any γ-MSH-ligand was like-

wise followed over time, and completeness of degradation of the γ-MSH ligand was thus reached

when the signaling activity had dropped to the level of plasma or CSF signaling. We further veri-

fied that signaling of γ-MSH and its breakdown products was MC3R-specific and did not elicit

signaling through any other endogenous, G-protein coupled cell surface receptors. To this end

plasma and CSF digested γ-MSH was tested on IRES GFP and Glo-sensor expressing cells.

Competition of Tyto alba alba (TA) β-MSH P9 with β-MSH H9, γ2-MSH

or γ3-MSH in MC3R and MC4R signaling

To address the question whether TA β-MSH P9 is dominant or recessive, we analyzed signal-

ing of the TA β-MSH H9 variant at 20 nM on MC3R, and 50 nM on MC4R in the presence of

increasing concentrations of Tyto alba β-MSH P9 (0 to 5 μM). Baseline corrected maximal

luminescence values were normalized to β-MSH H9 signaling at 50 nM and 20 nM on MC3R

and MC4R, respectively, in the absence of β-MSH P9.

To exclude that β-MSH P9 acts as a competitive antagonist to γ2- or γ3-MSH, the cAMP

signaling responses of 10 nM TA γ2-MSH or 10 nM TA γ3-MSH 10 S were analyzed in the

presence of increasing concentrations of TA β-MSH P9 (0 to 2 μM) on HEK293T cells trans-

fected with TA MC3R or MC4R and Glo-Sensor (see above). Signaling of TA β-MSH P9 alone

was analyzed in parallel. Maximal luminescence values in the γ2-MSH + β-MSH P9 series, and

the γ3-MSH 10 S +β-MSH P9 series were identified, baseline subtracted, and normalized to

the baseline corrected signaling response of 10 nM γ2-MSH or γ3-MSH 10 S in the absence of

β-MSH P9, respectively. The TA β-MSH P9 dose response curve in the absence of any γ-MSH

was normalized to signaling of 10 nM γ2-MSH within the same plate.

Results

A H9P mutation in β-MSH is linked to a polymorphic poly-serine stretch

in γ3-MSH in POMC of Tytonidae

Genetic screening of wild-living barn owl species uncovered a close association between the

mutation H9P in β-MSH and an unusual poly-serine extension in the γ3-MSH locus of

POMC. A preliminary comparative analysis of POMC sequences across Strigiformes (the order

including Tytonidae and its sister group Strigidae) showed that owl species from the Strigidae

family carry 3 serine residues in the homologous γ3-MSH position and β-MSH H9 wild-type

alleles. This includes the tawny owl Strix aluco (SA), used as a comparative outgroup to Tytoni-

dae in this study (Fig 1). These observations suggested that the polymorphisms in the γ3- and

β-MSH loci found in Swiss barn owls may be restricted to Tytonidae, which prompted us to

investigate the evolution of the POMC sequence throughout the phylogeny of this family.
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The Tytonidae originated about 45 million years ago (MYA) and contain only two genera

(Tyto and Phodilus) that split 28 MYA (Fig 1). Tyto alba, the Afro-Eurasian (or Western) barn

owl, is part of the barn owl group, which additionally includes two sister lineages, the Austral-

asian (or Eastern) barn owl Tyto javanica and the American barn owl Tyto furcata (Fig 1). The

barn owl group is sister to the rare Madagascar red owl, Tyto soumagnei, with whom it may

have shared a common ancestor ca. 8 MYA (Fig 1). The remaining Tyto species, grass-, sooty-

and masked owls belong to a distinct clade that may have shared a common ancestor with the

barn owl group and the Madagascar red owl ca. 12 MYA (Fig 1).

Similar to SA and other Strigidae, Phodilus and most Tyto species bear the wild-type H9 at

the HFRW receptor-binding motif of β-MSH (Fig 1). The homozygous proline mutation in

position 9 (P9) that alters the receptor-binding site of β-MSH from HFRW to PFRW was

exclusively present in the barn owl group, including the European Tyto alba alba (TA) (Fig 1).

The inspected Madagascar red owls, sister to the barn owl group, were found homozygous for

the β-MSH H9 allele, suggesting that the P9 mutation might have appeared after the split

between these two groups and before the barn owl group diverged into different lineages (ca. 6

MYA).

In the barn owl group, the PFRW motif in β-MSH co-presents with poly-serine stretches

ranging from 7 to 24 repeats in the γ3-MSH locus. In contrast, Tyto species bearing HFRW in

β-MSH contain 4 to 7 serine repeats in γ3-MSH, and Phodilus badius and the outgroup tawny

owl Strix aluco (SA) present with only 3 serine repeats. Thus, while the poly-serine stretches

extended>3 repeats in all Tyto species, they show substantial extension specifically within the

barn owl group, in conjunction with the H9P mutation in the β-MSH locus (Fig 1). The

genetic link between the H9P mutation in β-MSH and serine extension to� 7 repeats in

γ3-MSH, unique to the barn owl group, may therefore have evolved only once in the common

ancestor of this group.

Considering that β-MSH and γ3-MSH are both derived from the POMC precursor through

cleavage by PC1/3 and PC2 (Fig 2A) and bind the same receptors, we hypothesized a func-

tional link between the two polymorphisms. First, we tested the effect of the H9P mutation on

the receptor signaling capacity of β-MSH. We then investigated the impact of the poly-serine

polymorphism in the γ3-MSH locus on the processing of the POMC precursor, the receptor

signaling properties of the γ3-MSH peptide, and the plasma stability of γ3-MSH.

The H9P mutation in Tyto alba alba (TA) β-MSH abrogates receptor

signaling

In mammals, β-MSH exerts its major physiological functions by signaling through MC3R and

MC4R involving the second messenger cAMP [3, 29]. To test whether the H9P mutation

found in the barn owl group affects the receptor signaling activity of β-MSH, we compared TA

β-MSH P9 with β-MSH H9 from SA (Fig 2B and 2D). Sequence comparison revealed signifi-

cant differences between owl-derived MC3R and MC4R and available orthologues from other

species. We therefore generated recombinant forms of TA MC3R and MC4R. To quantita-

tively assess MCR activation by β-MSH variants, we employed a robust cell-based assay for

detection of intracellular cAMP levels [30]. Briefly, human HEK293T cells were transiently co-

transfected with TA MC3R or MC4R in combination with a plasmid expressing GloSen-

sorTM-20F cAMP that allows sensitive and reliable quantification of intracellular cAMP levels

via a luciferase reporter, as detailed in Materials and Methods. At 26 h post transfection, cells

were incubated with increasing concentrations of TA β-MSH P9 and SA β-MSH H9, followed

by detection of cellular cAMP levels by GloSensor assay. Dose-response characteristics

revealed>400-fold increase in EC50 on TA MC3R with TA β-MSH P9 compared to β-MSH
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H9 of SA (Fig 2D). The EC50 of SA β-MSH H9 was comparable to the EC50 observed for

human β-MSH H9 on the human MC3R orthologue in our system, further validating our sys-

tem (Fig 6F–6I). The maximal signaling amplitude (Emax) of TA β-MSH P9 was likewise

reduced, indicating a marked decrease in MC3R signaling of TA β-MSH P9 compared to SA

β-MSH H9 (Fig 2D).

To validate the specific contribution of the H9P mutation to the impaired signaling activity

of TA β-MSH, we introduced the reverse P9H mutation into TA β-MSH (TA P9H) and H9P

into SA β-MSH (SA H9P) (Fig 2C). The H9P mutation reduced the TA MC4R and MC3R sig-

naling of SA β-MSH by>100-fold and 10-fold, respectively (Fig 2E and 2F). The reciprocal

P9H mutation enhanced TA MC4R and MC3R signaling of TA β-MSH by almost 100-fold. In

addition to P9 / H9, TA and SA β-MSH differ in two residues, V7 / M7 and H5 / Y5, upstream

of the receptor-binding site (Fig 2B and 2C). The substitutions V7M and H5Y had no signifi-

cant effect on TA MC4R signaling of TA β-MSH (Fig 2F) and only mildly affected TA MC3R

signaling (Fig 2E), pinpointing P9 as the crucial mutation linked to the functional impairment

of TA β-MSH. It is conceivable that the marked reduction in MCR signaling activity of β-MSH

P9 may be due to loss of receptor binding. To address this point, we performed a competition

assay measuring receptor-signaling activity of an artificial, functionally active TA β-MSH H9

variant in presence of an increasing molar excess of defective TA β-MSH P9. As shown in Fig

2G and 2H, a molar excess of β-MSH P9 hardly affected β-MSH H9 receptor signaling, sug-

gesting that β-MSH P9 is unable to compete with β-MSH H9 for receptor-binding. In sum, the

data indicate that the H9P mutation in Tyto alba alba β-MSH abrogates receptor signaling.

The poly-serine stretch in the γ3-MSH locus affects PC cleavage of POMC

The proximity of the poly-serine polymorphism in γ3-MSH to PC cleavage sites 2 and 3 within

the POMC precursor opened the possibility that the number of flanking serine repeats may

influence the efficiency of PC processing (Fig 3A). Although PC substrate selectivity is mainly

defined by the residues at the dibasic recognition site K/R(X)nK/R#, flanking regions can affect

accessibility to the consensus site [34]. While the tissue-specific expression of POMC, PC1/3,

and PC2 in humans and rodents is well established, no information was available for barn

owls. Since barn owls are a protected species, we examined expression of POMC, PC1/3, and

PC2 mRNA in a specimen of TA that had died of natural causes. Relatively high levels of

POMC, PC1/3, and PC2 mRNAs were detected in the brain in cortex, hypothalamus, and pitui-

tary, confirming the presence of both relevant PCs in tissues linked to endocrine and paracrine

production of POMC and its derived peptide hormones (S2 Fig).

To investigate possible effects of the poly-serine polymorphism on processing of the owl-

derived POMC, we cloned TA orthologues of PC1/3 and PC2. Recombinant TA PC1/3 and

PC2 showed comparable expression in HEK293T cells and proper secretion was confirmed in

supernatants (S3A Fig). Enzymatic activity was examined employing a well-established in vitro
enzymatic assay using the canonical basic PC fluorogenic peptide Pyr-ERTKR-AMC as sub-

strate, as detailed in Materials and Methods. The barn owl-derived PC1/3 and PC2 were maxi-

mally active at mildly acidic pH in line with their known activity in acidified secretory

granules [35] (S3B Fig). As expected, both owl-derived PCs exhibited calcium-dependence

(S3C Fig), a hallmark of their mammalian orthologues. Activity of TA PC2, but not PC1/3,

Fig 1. Molecular phylogeny of the Tytonidae family, polymorphism in β-MSH at the receptor-binding site (ancestral HFRW or mutated

PFRW), and number of serine repeats in γ3-MSH. Tytonidae taxa homozygous for HFRW are written in red and taxa carrying the homozygous

mutation PFRW are written in orange. The range of the number of serine repeats is indicated in blue when� 7 and in green when� 7 and N

indicates the number of sequenced individuals. For taxa with a large number of individuals sequenced, we report the distribution of the number of

serine repeats. In the phylogenetic tree, 1 indicates that the node has a posterior probability of 1 (= 100%) and the time unit is million years (MYA).

https://doi.org/10.1371/journal.pone.0231163.g001
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critically depended on the co-expression of the chaperone 7B2, which is known to be required

for proper folding and transport of mammalian PC2 [36, 37] (S3D Fig). Interestingly, endoge-

nous basic PCs in HEK293T cells, e.g. PC2 or furin [38], did not yield significant cleavage of

the fluorogenic peptide Pyr-ERTKR-AMC after shedding into the supernatant, as shown in

mock transfected cells (S3B Fig). In sum, the data at hand indicated that the PC1/3 and PC2

variants obtained from TA were fully active and shared key characteristics of their mammalian

counterparts.

Next, we defined the yet unknown TA PC1/3- and PC2-specific cleavage pattern of TA and

SA POMC. The sequence of SA POMC contains nine putative basic PC cleavage motifs, simi-

lar to human POMC, whereas TA POMC contains an additional dibasic site within the joining

peptide (Fig 2B), resulting in ten putative cleavage sites. In order to label corresponding cleav-

age sites in both owl species consistently, we shifted SA POMC cleavage sites downstream of

the joining peptide by +1 (Fig 3A). The reported hierarchy of mammalian POMC processing

with initial cleavage at the ACTH-flanking sites 5 and 7 renders detection of site 2 and 3 cleav-

age products via the C-terminal V5 tag difficult. The POMC cleavage fragments were therefore

visualized by Western blot using the N-terminal influenza hemagglutinin (HA)-tag, which

allowed sufficient resolution. To define the identity of POMC cleavage products, we generated

a “ladder” comprised of a panel of SA POMC fragments reaching from the N-terminus to

cleavage sites 1, 2, and 3 (S4A Fig). The individual N-terminal SA POMC fragments served as

markers to identify the specific cleavage products generated by processing of full-length SA

POMC with PC1/3 and PC2 (S1 Data and S4 Fig).

After calibration of our system, we compared the PC-specific cleavage pattern in SA and

TA POMC. To this end, HEK293T cells were transfected with SA or TA POMC bearing vary-

ing numbers of serine residues, together with plasmids coding for TA PC1/3 and/or PC2 and

7B2. Supernatants were harvested and analyzed for cleavage products in Western blot (Fig 3).

Comparable expression of POMC precursor, PC1/3 and PC2 was verified in cell lysates (Fig

3B, S5A Fig and S5B Fig). POMC carries a single N-glycosylation motif NXS/T [39, 40] within

the γ3-MSH coding sequence. The three bands detected for POMC precursor in lysates were

identified as the mature complex N-glycosylated from, the high-mannose intermediary glyco-

sylation product, and the unglycosylated POMC precursor (Fig 3B and S1 Fig). In the superna-

tant, we detected predominantly the mature N-glycosylated form (S6B Fig). Co-expression

with PC1/3 or PC2 yielded the expected complementary cleavage patterns for POMC in both

SA and TA (Fig 3B). As in humans, cleavage of the owl-derived POMC precursors by PC1/3

yielded ACTH (Fig 3B), suggesting conserved PC specificities across species. PC1/3 was

required for the production of γ3-MSH and γ2-MSH (Fig 3B). The expected product of cleav-

age at site 1 representing the N-terminal fragment of POMC was not detected, suggesting

either inefficient processing or rapid degradation. Human POMC contains an O-glycosylation

Fig 2. The H9P mutation in Tyto alba alba β-MSH abrogates receptor signaling. (A) Summary on the hierarchical processing

of POMC by proprotein convertases PC1/3 and PC2 [4, 31–33]. (B) Schematic representation of Tyto alba alba (TA) / Strix aluco
(SA) POMC with putative dibasic cleavage sites indicated by scissors. Note the additional RR motif within the Joining peptide in

TA. The amino acid (aa) sequences of β-MSH for both owl species are indicated above the polypeptide precursor. (C) Synthetic β-

MSH peptide variants used to assess receptor signaling. The naturally occurring β-MSH variants in SA and TA are under-laid in

gray and are designated as wild-type (wt), with differing aa depicted by enlarged letters. In artificial variants, aa in agreement with

TA or SA wt forms are in red and blue, respectively. Wt TA β-MSH variants carry proline in position 9 (P9) as part of the PFRW

receptor-binding motif (yellow), whereas β-MSH of SA displays histidine in position 9 (H9). (D-F) Receptor-signaling of β-MSH

variants. Recombinant TA MC3R or MC4R were transiently expressed in HEK293T cells, followed by exposure to synthetic β-

MSH peptides at the indicated concentrations. Receptor signaling activity was assessed by monitoring cellular cAMP levels via

Glo-sensor in a luminescence assay as detailed in Materials and Methods. Data are means + SEM, n = 3. Dose-response curves

were calculated by non-linear regression analysis. (G, H) TA β-MSH P9 cannot compete with the hypothetic TA β-MSH H9 form

in receptor signaling, neither on MC3R (G) nor MC4R (H).

https://doi.org/10.1371/journal.pone.0231163.g002
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site at position T45 [41], which may contribute to stability of the N-terminal fragment. Owl-

derived POMC bears S in the homologous position, but its O-glycosylation state is unclear.

The poly-serine polymorphism at the γ3-MSH locus of TA affected processing at the flank-

ing cleavage sites 2 and 3, required for the production of γ2-MSH and γ3-MSH, respectively.

Specifically, the N-terminal fragment resulting from site 2 processing by PC1/3 was detected

in PC1/3-digested SA POMC with 3 serine residues, but seemed absent from TA POMC con-

taining 10 or 18 serine residues (Fig 3B). Artificially increasing the number of serine residues

from 3 to 18 in SA POMC resulted in a similar apparent loss of site 2 cleavage by PC1/3. Recip-

rocally, shortening the poly-serine stretch in TA from 18 to 3 enhanced site 2 processing. The

modulation of PC1/3-mediated site 2 processing by variation of the number of the flanking

serine residues in γ3-MSH of both owl species provided first evidence that the poly-serine

polymorphism could influence POMC cleavage.

Expansion of the poly-serine stretch increases the γ3-MSH/γ2-MSH ratio

Our phylogenetic examination revealed that the presence of the H9P loss-of-function muta-

tion in β-MSH was associated with a sharp transition in the length of the poly-serine stretch to

�7 residues (Fig 1). We therefore examined the time course of PC1/3 and PC2 cleavage of TA

POMC containing increasing numbers of serine residues in the γ3-MSH locus (Fig 4). SA

POMC variants containing 3 or 18 serine residues in the γ3-MSH locus served as benchmarks.

TA POMC with 3 serines and SA POMC containing 18 serines do not naturally occur and

were included to assess the influence of the poly-serine stretch across species. Recombinant

TA POMC variants with 3, 5, 7, 10 or 18 serine repeats were co-expressed with TA PC1/3 and

PC2, and supernatants sampled at the indicated time points. Comparable levels of POMC pre-

cursor and PC expression were verified by Western blot in cell lysates (S6A Fig and S6B Fig).

Examination of PC processing over time revealed that TA POMC containing 5 serine residues

underwent cleavage with kinetics comparable to the TA construct with 3 serine repeats (Fig

4B), whereas variants containing�7 residues showed markedly delayed processing at both

sites 2 and 3 (Fig 4C–4E). As expected, extension of the poly-serine stretch from 3 to 18 in the

γ3-MSH locus of SA POMC delayed site 2 cleavage (Fig 4F) with kinetics comparable to the

TA variant with 18 serine residues (Fig 4E).

The observed reduction in cleavage at sites 2 and 3 in POMC with� 7 serine residues dif-

ferentially affects γ3-MSH levels. Specifically, inhibition of site 3 cleavage decreases the pro-

duction rate of γ3-MSH from the N-terminal fragment 5 precursor, whereas inhibition of site

2 cleavage increases γ3-MSH levels at the expense of γ2-MSH. To assess the net effect on

γ3-MSH levels, we quantified the signals corresponding to N-terminal cleavage fragments 5, 3

and 2 and calculated production- and degradation rates of γ3-MSH (Fig 4A–4G). The resulting

Fig 3. The poly-serine stretch in the γ3-MSH locus of POMC affects PC cleavage. (A) Schematic representation of recombinant

double-tagged (HA, V5) SA / TA POMC precursor with dibasic cleavage sites 1 to 10, required for production of the peptide hormones

γ2-MSH, γ3-MSH, ACTH, α-MSH, CLIP, β-LPH, γ-LPH, β-MSH, and β-end. The N-glycan at the asparagine residue within γ3-MSH is

depicted as black pentagon. The polymorphisms in γ3-MSH and β-MSH are shown above the POMC precursor. N-terminal cleavage

fragments up to sites 1 through 10 are listed below the precursor, and corresponding bands in the below Western blots are labeled by the

according numbers in red. Fragments 3u, 5u, 6u likely correspond to under-glycosylated forms of fragments 3, 5 and 6, respectively. The

full length POMC precursor is labeled with PP. The indicated molecular masses of fragments were calculated as detailed in Supplemental

Information and S4 Fig. (B) Cleavage of TA / SA POMC variants by TA PC1/3 and PC2 (with 7B2) in HEK293T cells. Cell lysates and

supernatants were harvested 56 h post transfection and N-terminal POMC fragments were detected in Western blot with an anti-HA

antibody. Note that the PC1/3-specific fragment resulting from cleavage at site 2 (red arrow) is present in wt SA POMC with 3 serine

residues, but not in TA POMC with 10 or 18 serine residues (asterisks indicating missing fragments produced by the respective PC).

Reducing the number of serine residues in TA POMC to 3 leads to re-appearance of band 2 (green arrow), and increasing the number of

serine residues in SA POMC to 18 to its disappearance. Identified PC1/3 and PC2 specific cleavage sites in SA and TA POMC are

indicated in the bottom schematic below the scissors.

https://doi.org/10.1371/journal.pone.0231163.g003
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steady-state levels of γ3-MSH derived from individual POMC variants were then normalized

for each time point to the corresponding artificial TA POMC 3 S variant that served as an

internal standard. As shown in Fig 4G, extension from 3 to 5 serines hardly affected γ3-MSH

steady-state levels. Extension to 7 serine residues resulted in a modest (2-3-fold) increase. In

contrast, presence of poly-serine repeats of 10 or 18 residues lead to a robust (>5-fold) increase

of γ3-MSH levels after 48 h (Fig 4G). Although semi-quantitative in nature, our analysis

revealed that expansion of the poly-serine stretch increases the γ3-MSH / γ2-MSH ratio.

Differential MC3R signaling by γ2-MSH and γ3-MSH

Next, we characterized the receptor signaling properties of γ2-MSH and γ3-MSH variants. To

this end, we used a panel of synthetic peptides representing γ2-MSH and the γ3-MSH variants

listed in Fig 5A. Our quantitative receptor-signaling assay revealed only minor differences

among γ2-MSH and γ3-MSH variants with up to 13 serine residues (Fig 5A). Only the

γ3-MSH forms containing 18 and 19 serine residues showed reduced cAMP signaling on

MC3R (Fig 5A).

As mentioned above, biosynthetic γ3-MSH bears a conserved N-glycan in P2’ position of

cleavage site 2, which is absent from γ2-MSH. Since this modification was not present in the

chemically synthesized peptides used in Fig 5A, we generated recombinant, fully glycosylated

TA N-terminal POMC fragments ending at cleavage site 3 (pro-γ-MSH) and carrying 5, 7, 10

or 18 serine residues (Fig 5B). The non-natural Tyto pro-γ-MSH form with 3 serine residues as

well as the non-N-glycosylated, N-terminal POMC fragment ending at cleavage site 2, corre-

sponding to γ2-MSH were added as benchmarks. Expression of TA pro-γ-MSH in HEK293T

cells resulted in correct N-glycosylation (S4F Fig). Upon transient expression in mammalian

cells, conditioned supernatants were harvested, serially diluted, and TA MC3R signaling activ-

ity monitored. Data were normalized to the expression levels in supernatants determined by

Western blot (Fig 5C and 5D) and relative signaling activities calculated (Fig 5E and 5F). All

pro-γ-MSH fragments ending at cleavage site 3 and including the N-glycan showed >10-fold

reduced signaling activities on MC3R when compared to the site 2 fragment corresponding to

γ2-MSH. In summary, our data indicate reduced signaling activity of γ3-MSH on MC3R when

compared to γ2-MSH, possibly due to steric hindrance by the N-glycan in position P2’.

Serine repeats affect the plasma stability of γ3-MSH

So far, our studies uncovered that poly-serine extension to�7 residues in the γ-MSH locus of

TA POMC increased the γ3-MSH/γ2-MSH ratio and that the signaling activity of γ3-MSH is

reduced compared to γ2-MSH. Lastly, we investigated whether the length of the serine repeats

affected the stability of γ3-MSH in plasma with possible relevance for its endocrine function.

To this end, we employed a well-established in vitro assay to assess the plasma stability of

Fig 4. The poly-serine stretch in the γ3-MSH locus of POMC affects γ3-MSH steady-state levels. (A) Schematic figure explaining the

assessment of steady-state levels of TA γ3-MSH fragment (under-laid in yellow). The immediate fragment 5 precursor is cleaved from full length

POMC (top, as in 3B) and is further trimmed to fragments 3 and 2, whereby all cleavage steps are mediated by PC1/3. Steady-state levels of TA

γ3-MSH fragment are operationally defined as the ratio of its production rate (P) / degradation rate (D). The production rate is calculated from

the ratio of the signals Sband3 / Sband5 and the degradation rate from the ratio Sband2 / Sband3 as indicated in the formula. (B-F) HEK293T cells were

transfected with TA POMC containing 3, 5, 7, 10 or 18 serine residues in the γ3-MSH locus or SA POMC containing 3 or 18 serine residues

together with PC1/3, PC2 and mouse 7B2, as in 3B. Aliquots of supernatant were harvested at the indicated time points, and N-terminal POMC

cleavage products detected in Western blot with an anti-HA antibody. Bands corresponding to the N-terminal cleavage site 5, 3 and 2 fragments,

labeled in green, red and blue, respectively, were quantified by densitometry. (G) Quantification of the steady-state levels of γ3-MSH fragment

over time based on blots B-F. For each POMC species and time point indicated, the steady state levels of γ3-MSH fragment were determined as

outlined in A, using the same blots with suitable exposure times, and normalized to the steady sate level of artificial TA γ3-MSH fragment with 3

serine residues at the corresponding time point within the same blot (internal standard).

https://doi.org/10.1371/journal.pone.0231163.g004

PLOS ONE Functional characterization of POMC mutations

PLOS ONE | https://doi.org/10.1371/journal.pone.0231163 May 5, 2020 20 / 33

https://doi.org/10.1371/journal.pone.0231163.g004
https://doi.org/10.1371/journal.pone.0231163


Fig 5. The signaling activity of N-glycosylated γ3-MSH on MC3R is reduced compared to γ2-MSH. (A) Receptor signaling of synthetic, non-

glycosylated γ2- and γ3-MSH peptides (aa sequences depicted at the top). HEK293T cells were transiently transfected with expression plasmids for the TA

MC3R and Glo-sensor. After 26 h, cells were exposed to the indicated synthetic peptides at the given concentrations. Dose-response curves were

established by non-linear regression curve fit and normalized to the signaling activity of γ2-MSH at 1 μM. The relative signaling activities of γ3- compared
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peptide hormones, as detailed in Materials and Methods. Since both TA and SA are protected

species, plasma sampling in sufficiently high amounts was not feasible. Based on our previous

experience, lack of stringent quality control made chicken plasma obtained from slaughter-

houses not suitable for our purposes neither. Considering the overall sequence conservation,

we therefore opted for reconstituted human plasma as a surrogate. Synthetic peptides corre-

sponding to γ2-MSH and the γ3-MSH variants depicted in Fig 6A were incubated in human

plasma at 37˚C. At the indicated time points, samples were taken and activity of peptide hor-

mones detected via our functional receptor-signaling assay. The plasma half-life of owl-derived

γ2-MSH was 27 min under our conditions (Fig 6A). The γ3-MSH variants had longer half-

lives that gradually increased, proportional to the number of serine residues present (Fig 6A

and 6B). The highest stability was observed with TA γ3-MSH containing 13 serine residues

resulting in a half-life of 32 h, i.e. 70-fold longer than that of γ2-MSH and > 6-fold longer than

that of γ3-MSH containing 5 serines (Fig 6A and 6B). Further extension of serine repeats to 18

and 19 residues decreased the plasma half-life of TA γ3-MSH to 19 and 14 h, respectively (Fig

6A and 6B). No unspecific signaling of γ-MSH or its plasma degradation products was

observed (S7A Fig). In reconstituted human cerebrospinal fluid (CSF), both γ2-MSH and

γ3-MSH peptides were stable for several hours (S7B Fig), likely due to reduced levels of

degrading enzymes. The striking effect of the poly-serine length on the plasma stability of

γ3-MSH suggests a role of the poly-serine polymorphism in the endocrine function of the pep-

tide hormone.

Stabilized γ3-MSH can compensate for loss of β-MSH signaling in Tyto
alba alba (TA)

Our studies revealed that an increased length of the poly-serine stretch enhanced in particular

plasma stability of TA γ3-MSH. We therefore hypothesized that increased bioavailability of

γ3-MSH may somehow compensate for the loss of β-MSH signaling caused by the H9P muta-

tion in the receptor-binding site. As mentioned above, we verified that POMC, PC1/3 and

PC2 were expressed in the pituitary of TA, rendering the production of γ3-MSH as well as β-

MSH and their release into the bloodstream feasible (S2 Fig). To test our hypothesis, we chose

γ3-MSH with 10 serine residues as a representative example for a “stable” γ3-MSH form. As

already shown in Fig 2G and 2H, β-MSH P9 was unable to compete with functional β-MSH

H9 at the receptor level. However, we could not formally exclude the possibility that TA β-

MSH P9 could somehow compete with γ-MSH in receptor signaling. We therefore monitored

the MC3R and MC4R signaling activities of γ2-MSH and γ3-MSH with 10 serine residues in

presence of increasing concentrations of TA β-MSH P9 (Fig 6D and 6E). Again, we observed

no evident interference of β-MSH P9 with γ2-MSH or γ3-MSH receptor signaling (Fig 6D and

to γ2-MSH were calculated from normalized dose response curves (highest value = 1, lowest value = 0) and expressed as 1 / relative EC50 (n = 3 dose

response curves per peptide, statistical differences were determined by unpaired t-test, �p< 0.05, ��p<0.01, ���p<0.001, ����p<0.0001). (B) Schematic

representation of recombinant N-terminal TA POMC cleavage site 2 and 3 fragments including from N- to C-terminus: the POMC signal peptide (SP),

the HA epitope-tag, the mature N-terminal POMC sequence up to cleavage site 2 (cl2) or cleavage site 3 (cl3), with 3, 5, 7, 10 or 18 serine residues in the

γ3-MSH locus. (C) The constructs in B were transiently expressed in HEK293T cells and detected in supernatants by Western blot 71 h post transfection

(triplicates). Please note the presence of characteristic upper bands corresponding to N-glycosylated forms (compare with S4 Fig). (D) Densitometric

quantification of C. (E) Supernatants from transfected cells were serially diluted and signaling activity on TA MC3R assessed by Glo-sensor assay as in 5A.

Relative concentrations were corrected for the expression levels in cell supernatants (C, D) and maximal luminescence values normalized in each

transfection series to the maximal signaling activity of TA POMC cl2 fragment at its highest concentration. Dose-response curves were established (E).

Supernatants from mock-transfected cells served as negative controls (mock). (F) Relative EC50 values for the different N-terminal TA POMC cl2 and cl3

fragments were calculated from dose response curves in E (n = 3), and the signaling activity (1 / relative EC50) was determined and normalized to 1 /

relative EC50 of TA POMC cl2 fragment from the same transfection series. Mean values and SEM are depicted (n = 3). Differences were evaluated by

ANOVA followed by Tukey’s multiple comparison test (�p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001).

https://doi.org/10.1371/journal.pone.0231163.g005

PLOS ONE Functional characterization of POMC mutations

PLOS ONE | https://doi.org/10.1371/journal.pone.0231163 May 5, 2020 22 / 33

https://doi.org/10.1371/journal.pone.0231163.g005
https://doi.org/10.1371/journal.pone.0231163


Fig 6. The β-MSH H9P loss of function mutation and increased plasma stability of γ3-MSH vs. γ2-MSH are conserved between owls and humans.

Synthetic peptides of TA and SA γ2-MSH, SA γ3-MSH with 3 serine residues, or TA γ3-MSH with 5, 7, 10, 11, 13, 18 and 19 serine residues were

diluted in human plasma (A), or water (C) to final concentrations of 2 μM and incubated at 37˚C. Incubations for all γ-MSH peptides were performed

in triplicate. Aliquots were removed after different time points for up to 68 h, and the remaining cAMP signaling activity was simultaneously

determined on TA MC3R and Glo-sensor transfected HEK293T cells by luminescence assay. Measured maximal luminescence values were normalized
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6E), opening the possibility that stabilized γ3-MSH carrying�7 serine residues could compen-

sate for the defective β-MSH P9 in the periphery.

The phenotype of the β-MSH H9P mutation and increased plasma stability

of γ3-MSH vs. γ2-MSH are conserved in humans

Based on our findings in owl populations, we investigated possible conservation of observed

POMC mutations and their phenotypes in humans. Searching of genetic databases revealed

that the mutation H225P in human POMC, corresponding to the β-MSH H9P mutation,

occurs at low frequency (S2 Table). In contrast to Tyto species, the human β-MSH H9P muta-

tion occurs only heterozygous and is not associated with an overt phenotype (S2 Table). We

next analyzed the impact of the human β-MSH H9P mutation on signaling through human

MC3R and MC4R (Fig 6F and 6G). The H9P replacement in human β-MSH markedly reduced

signaling activity on both receptors (>30 fold increased EC50), and lowered the signaling

amplitude on MC3R (Fig 6F and 6G), similar to our findings in barn owls (Fig 2D–2F). The

previously reported human β-MSH mutations Y5C and P15L, associated with obesity in het-

erozygous carriers [12, 14, 15], resulted in weaker effects in our hands (Fig 6H and 6I). The

apparent discrepancy with the observed human phenotypes suggests effects of these mutations

on the biosynthesis, folding, and processing of POMC. In analogy to the Tyto species, poly-

morphisms with extensions of the serine rich tail in γ3-MSH were identified in humans (S2

Table), in particular microsatellite amplifications of the SSG motif [11]. We therefore analyzed

non-glycosylated synthetic peptides of these naturally occurring γ3-MSH human variants in

MC3R and MC4R signaling. No major differences compared to wild-type human γ2- and

γ3-MSH were observed (Fig 6J and 6K), similar to Tyto alba alba with serine extensions�13

residues (Fig 5A). Plasma stability of non-glycosylated human wild-type γ3-MSH was >100

fold increased over γ2-MSH (Fig 6L), closely matching the observed plasma stabilization in the

barn owl. Moreover, addition of SSG motives further increased the half-life to>150 fold (Fig

6L). Although limited in scope, these studies suggest that the phenotype of the β-MSH H9P

mutation and increased plasma stability of γ3-MSH vs. γ2-MSH may be conserved in humans.

Discussion

Our genetic studies in wild-living owl populations revealed a striking association between a

H9P mutation in β-MSH and an extension of the poly-serine stretch in γ3-MSH to 7 to 24 resi-

dues in the Tytonidae family (Fig 7A). Phylogenetic analysis showed that only the barn owl

group within the Tytonidae displayed the CAT to CCT single nucleotide polymorphism in β-

MSH that resulted in a H9P mutation changing the receptor-binding site from HFRW to

PFRW. In contrast, all other species analyzed within the Tytonidae carry β-MSH H9 alleles

with intact HFRW receptor-binding sites in conjunction with γ3-MSH alleles bearing 4–7

to values at time point zero and half-lives were determined from one-phase decay curves (A, B). γ2-MSH, γ3-MSH and their breakdown products in

blood plasma did not induce any signal on non-MC3R, but Glo-sensor transfected cells (S7A Fig). No loss in signaling activity was observed in water up

to 68 h neither for γ2- nor for γ3-MSH, therefore excluding non-enzymatic decay or signaling loss over time due to peptide aggregation (C). (D, E) The

inactive TA β-MSH P9 with its dysfunctional receptor-binding site PFRW does not act as a competitive antagonist for γ-MSH signaling on MC3R or

MC4R, neither for γ2-MSH nor for γ3-MSH 10 serine variant. (F-I) Dose response curves for human MC3R (F, H) and MC4R signaling (G, I) of

synthetic human β-MSH H9 (wild-type, Y5, P15), and mutant β-MSH P9, β-MSH Y5C and β-MSH P15L peptides. Data are means + SEM, n = 3. (J-K)

Signaling of synthetic human non-glycosylated γ2- and γ3-MSH peptides (wild-type or with one or two SSG extensions in the serine-rich tail) on

MC3R (J) and MC4R (K). Data are means + SEM, n = 3. EC50 were determined from dose response curves established after non-linear regression

curve fit for the different human β- and γ-MSH peptides as described (Figs 2D–2F and 5A) and were normalized (EC50n) to the EC50 obtained for

wild-type human β- (F-I) and γ2-MSH peptides (J, K). (L, M) Plasma stability of human γ2-MSH or γ3-MSH peptides (wild-type or γ3-MSH SSG or

γ3-MSH SSG SSG) was assessed on human MC3R as described above for owl γ-MSH peptides on TA MC3R (A). Background signaling of residual

human γ3-MSH peptides was established on non-MC3R, but Glo-sensor transfected cells (L, M).

https://doi.org/10.1371/journal.pone.0231163.g006
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serine residues. The closest relative of the barn owl group, the Madagascar red owl Tyto sou-
magnei, carries homozygous β-MSH H9 in combination with only one allelic variant of

γ3-MSH containing 7 serine residues. According to our phylogenetic analysis, the Madagascar

red owl and the barn owl group had a common ancestor around 8 MYA and the barn owl

group diverged into distinct lineages approximately 6 MYA. The β-MSH P9 variant therefore

likely emerged between 6 and 8 MYA in a common ancestor of the barn owl group, who may

have already carried a γ-MSH variant with 7 serine residues (Fig 1).

Our functional studies with TA MCR orthologues revealed markedly reduced receptor sig-

naling of β-MSH P9. This was not unexpected since H9 is part of the highly conserved HFRW

receptor-binding motif common to α-, β- and γ-MSH and critical for MCR activation [42].

The phenotype of β-MSH P9 appears recessive, since β-MSH H9 receptor signaling was unaf-

fected by a molar excess of β-MSH P9. In the barn owl group, including the Swiss population

Fig 7. Model explaining central compensation of serine extended γ3-MSH for dysfunctional β-MSH P9 in the barn owl group. (A)

Phenotypes associated with polymorphisms in β- and γ-MSH. (B, C) Working model: POMC and MC3R-expressing neurons in the arcuate

nucleus of the hypothalamus projecting to MC4R expressing neurons of the paraventricular nucleus are shown. Anticipated MSH signaling

scenarios are depicted for the combination of intact β-MSH H9 and γ3-MSH with< 7 serine residues (5 S) as in ancient clades of Tydonidae (B),

and for dysfunctional β-MSH P9 and γ3-MSH with> 7 serine residues (10 S) as found in the barn owl group (C). The extension of serine residues

in the POMC γ3-MSH locus to�7 increases the production of γ3-MSH at the cost of γ2-MSH, as exemplified by the γ3-MSH 10 S variant in the

barn owl group (C). Since the MC3R signaling activity of γ3-MSH is reduced by approximately one order of magnitude compared to γ2-MSH, the

auto-inhibitory γ-MSH activity on POMC expressing neurons of the arcuate nucleus is strongly decreased in C. As a consequence, the release of

POMC derived MSH peptides is prolonged. The lack of β-MSH P9 signaling on post-synaptic MC4R in the paraventricular nucleus can therefore

be compensated by increased amounts of α-MSH in the synaptic cleft. The elevated cAMP levels in neurons of the paraventricular nucleus

resulting from MC4R activation can therefore be maintained and an energy imbalance prevented, despite dysfunctional β-MSH P9.

https://doi.org/10.1371/journal.pone.0231163.g007
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of TA, all 484 sequenced individuals were homozygous for β-MSH P9. Despite the absence of

functional β-MSH in TA no overt signs and symptoms resembling the clinical manifestations of

decreased functional levels of α- and /or β-MSH in human were found [11, 13–15, 43, 44]. We

therefore hypothesized a compensatory effect by the poly-serine polymorphism in γ3-MSH.

First, we investigated the influence of the poly-serine repeat length in the γ3-MSH locus on

POMC precursor processing by PC1/3 and PC2. We found that increased numbers of serine

repeats in the γ3-MSH locus starting with a “threshold” of minimally 7 residues enhanced pro-

duction of γ3-MSH at the expense of γ2-MSH. We further observed that cleavage of TA and

SA POMC at the γ3-MSH internal site 2 arginine-arginine (RR) motif was rather inefficient.

This might be due to shielding by the conserved N-glycan in position P2’ [31, 45], as described

for cleavage by other basic PCs [46]. As a consequence, γ3-MSH but not γ2-MSH might repre-

sent the major γ-MSH form. The existence of γ2-MSH is however suggested in other species

evidenced by its isolation e.g. from human heart and bovine pituitary [47, 48]. When compar-

ing γ3-MSH with γ2-MSH, we discovered that γ3-MSH forms showed significantly dimin-

ished receptor signaling activity regardless of the number of serine residues, possibly due to

steric hindrance of receptor-binding by the N-glycan in P2’.

Shifting production to a less active γ-MSH species in the absence of functional β-MSH, as

observed in TA, seems at first sight puzzling. However, our observations might be explained in

the context of an auto-inhibitory function of γ-MSH in the hypothalamic circuitry regulating

food intake as suggested in our working model (Fig 7B and 7C). POMC expressing neurons in

the arcuate nucleus of the hypothalamus project to the paraventricular nucleus where they

release α-, β- and γ-MSH. MSH-mediated activation of MC4R on post-synaptic paraventricu-

lar neurons leads to suppression of appetite [6–8, 29]. Both α-MSH and β-MSH, but not γ-

MSH reduced food intake at equimolar doses after intra-cerebral injection to fasted rats [7].

Loss-of-function mutations in human β-MSH are associated with obesity, despite the presence

of functional α-MSH [12–15], suggesting that the overall dose of α- and β-MSH is critical for

MC4R activation in the paraventricular nucleus. Notably, γ-MSH is implicated in MC3R-

mediated auto-inhibition of the activity of POMC expressing neurons in the arcuate nucleus

[8, 29, 49]. Here, we show that TA β-MSH P9 is dysfunctional. A shift towards production of

γ-MSH forms with reduced signaling activity, as suggested by our studies for TA, may lead to

prolonged MSH secretion from POMC-expressing neurons in the arcuate nucleus. The conse-

quent increase of α-MSH levels in the paraventricular nucleus may compensate for the dimin-

ished post-synaptic MC4R activation due to defective β-MSH P9. Although speculative at this

point, our model may explain at least in part the genetic link between β-MSH P9 and the serine

extension to�7 residues in γ3-MSH of Tytonidae.

Our working model (Fig 7B and 7C) may provide an explanation for the increase in the

number of serine residues in the TA POMC γ3-MSH locus from 7 to 10 with its accompanying

shift from γ2- to γ3-MSH production, but not beyond, since no additional increase in the

γ3-MSH steady state levels was observed from 10 to 18 serine residues. The driving force

behind the observed extension >10 serine residues remained elusive. We therefore investi-

gated the consequences of serine extension for the endocrine function of γ3-MSH. First, we

confirmed the co-expression of POMC, PC1/3 and PC2 in the pituitary of TA, required for the

release of γ3-MSH into the bloodstream. We then analyzed the plasma stability of γ3-MSH

with varying serine repeat lengths. The plasma half-lives of synthetic γ3-MSH with�7 serine

residues were prolonged compared to γ3-MSH with 3 or 5 serine residues. A maximal half-life

of>30 h was reached with 13 serine residues, with a decline observed with 18 and 19 serine.

Both β-MSH and γ3-MSH are implicated in lipolysis [50–52]. Stabilized γ3-MSH might thus

compensate for impaired lipolysis caused by functionally deficient β-MSH P9. In addition, ele-

vated γ3-MSH levels might be beneficial due to anti-inflammatory effects mediated through
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MC1R on neutrophils, monocytes and dendritic cells and MC3R on macrophages [53, 54].

Amplification to 18 and 19 serine residues in γ3-MSH seems suboptimal for plasma stability

and peripheral signaling, but, due to increased EC50 on MC3R (Fig 5A), may further augment

the efficiency of the central α-MSH compensation mechanism in the arcuate nucleus. In wild-

living owls, these different compensation mechanisms may need to be balanced depending on

environmental factors. This might be reflected in the shifted frequency distributions of

γ3-MSH poly-serine lengths in Tyto species living in different habitats.

Intrigued by our findings in owl populations, we investigated possible conservation of the

observed POMC mutations and their functional consequences in humans. The mutation H9P

in β-MSH was found to occur in humans, albeit with low frequency and exclusively heterozy-

gous. In analogy to our findings in the barn owl system, the H9P mutation resulted in a

marked loss of biological function in human β-MSH. However, in contrast to the barn owl,

known insertions of SSG motives in human γ3-MSH resulted in only incremental increases in

plasma stability and no genetic linkage between the two polymorphisms has been reported in

humans so far. This may also explain the currently strict heterozygosity of human β-MSH P9,

suggesting a detrimental phenotype of homozygotes in absence of any compensation. Interest-

ingly, a loss of function mutation of β-MSH found in Labrador dogs that does not affect the γ-

and α-MSH loci leads to increased appetite and body weight [55]. This suggests a link between

β-MSH deficiency and obesity in the absence of any compensation. Mice and rats also lack

functional β-MSH, due to a deficient cleavage site. However, the simultaneous loss of the

γ3-MSH internal dibasic cleavage site in these rodents yields exclusively γ3- but not γ2-MSH.

Overall, this resembles the situation in Tyto alba, where homozygous loss of function in β-

MSH is linked to increased γ3-over γ2-MSH production. Therefore the lack of any overt obe-

sity phenotype in Tyto alba despite the homozygous H9P β-MSH loss of function mutation

might be explained by compensation through serine amplification to 10–24 residues in the

γ3-MSH locus, diminishing cleavage of POMC at site 2 and increasing the levels of γ3-MSH,

in analogy to rodents. Likely, an initial γ3-MSH serine extension to a minimum of 7 residues

was required for the homozygous H9P β-MSH mutation to be viable in Tyto alba, and was

optimized by continued serine extension to further augment γ3-MSH levels. Lastly, a

>100-fold stabilization in plasma can be observed for human γ3- compared to γ2-MSH, simi-

lar to the>70-fold stabilization in Tyto alba. This supports the notion that γ3-MSH might

indeed represent the systemic or endocrine form of γ-MSH.

Supporting information

S1 Fig. Tyto alba alba (TA) and Strix aluco (SA) POMC polypeptide precursors are N-gly-

cosylated. We analyzed in two naturally occurring POMC variants, TA POMC 18 S (A) and

SA POMC 3 S (B), whether the number of serine residues influenced N-glycosylation at the

neighboring asparagine residue. In lysates of HEK293T cells transfected with N-terminally

HA-tagged POMC, three bands of POMC precursor could be detected by Western blot with

anti-HA antibody for both species (mock treated lanes in A, B). Enzymatic treatment of lysates

with both Peptide-N-Glycoidase F (PNGase F) and Endoglycosidase H (Endo H) resulted in

disappearance of the high-mannose or hybrid structure, intermediary glycosylation product

(intermediary band in A, B). Treatment of POMC with PNGase F additionally removed the

fully matured, complex type oligosaccharide from the POMC protein backbone (highest band

in A, B). Therefore, the asparagine residue next to the poly-serine stretch carries fully matured

complex-type oligosaccharides in both, SA POMC 3 S and TA POMC 18 S, and N-glycosyla-

tion is unaffected by the large number of serine residues in TA.

(TIF)
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S2 Fig. Full length POMC, PC1/3 and PC2 are abundantly expressed in the pituitary and

hypothalamus of Tyto alba alba. The relative expression levels of full length POMC (green

bars), PCSK1 (blue bars, coding for PC1/3), and PCSK2 (red bars, coding for PC2) were deter-

mined by qPCR. Expression in all tissues was measured relative to the control genes Elonga-

tion factor 1A (EEF1A) and ribosomal protein L13 (RPL13), and subsequently normalized to

expression in the pituitary, the tissue displaying the highest expression level for all three genes.

Generally, expression of full length POMC, PC1/3 and PC2 was most pronounced in the brain.

With relevance to the endocrine pathway, production of all POMC cleavage products, includ-

ing γ3-MSH, should be feasible, given the expression of both proprotein convertases, PC1/3

and PC2 in the pituitary.

(TIF)

S3 Fig. In vitro characterization of Tyto alba alba (TA) PC1/3 and PC2 activities. (A)

HEK293T cells were transfected with plasmids coding for C-terminally myc-tagged TA PC1/3,

or C-terminally myc-tagged TA PC2 + mouse 7B2, and PC expression was verified in cell lysates

(L) and supernatants (S) by Western blot analysis using anti-myc antibody. (B-D) PC-contain-

ing supernatants or supernatants from mock-transfected cells (negative control) were tested in
vitro for their cleavage efficiency of Pyr-ERTKR-AMC substrate. PC1/3 and PC2 cleavage activi-

ties were monitored as the increase of relative fluorescence units over time (RFU/min) during

the phase of linear increase in signal intensity. (B) Within the analyzed pH range, TA PC1/3 dis-

played highest activity around pH 5, and PC2 in combination with 7B2 was most active at pH

4.5 to pH 6. No activity is observed in supernatants from mock-transfected cells across the

entire pH range. (C) Both PC1/3 and PC2 are calcium-dependent as shown by the strong

decrease in cleavage activity in the presence of 10 mM EDTA. (D) In contrast to TA PC1/3, TA

PC2 requires the chaperone 7B2 for its activity. The activity of TA PC1/3 is unaffected by the

presence of 7B2. The newly cloned TA proprotein convertases PC1/3 and PC2 thus exhibit the

typical profile of their respective orthologues from other species such as mouse and human.

(TIF)

S4 Fig. Identification of N-terminal POMC fragments in Strix aluco (SA) resulting from

PC-cleavage. (A) Schematic representation of cloned N-terminal SA POMC fragments used

as a size ladder in Western blot. All DNA constructs contain from N- to C-terminus: 1) The

POMC signal peptide 2) the HA tag representing the new N-terminus in mature ladder frag-

ments 3) the POMC sequence downstream of the signal peptide extending to PC cleavage sites

1, 2 or 3 with their dibasic cleavage motives RK, RR and KR in ladder fragments L1, L2 and L3

(3 serine residues), respectively. Additionally, fragments L2 and L3 lacking cleavage site 1 (L2

w/o cl1 and L3 w/o cl1) were produced by replacing the dibasic motive RK by EE to prevent

potential trimming of these fragments to L1 by endogenous basic PCs. (B-E) HEK293T cells

were transfected with one of the 5 ladder constructs depicted in A or with full length HA-

tagged SA POMC and plasmids coding for TA PC1/3, PC2 and 7B2, to generate the full spec-

trum of SA POMC cleavage products (E). POMC and ladder fragments were detected in

lysates and supernatants 84 h post transfection by Western blot using anti-HA antibody. (B, E)

Fragments L2 and L2 w/o cl1 from cell lysates migrated at the same apparent molecular weight

of 11 kDa, whereas fragment L1 was detected at 9 kDa, thus excluding L2 cleavage at site 1 by

endogenous basic PCs. Fragments L3 and L3 w/o cl1 both produced identical patterns with

two bands migrating at approximately 12 and 14 kDa, thus demonstrating the absence of

cleavage at sites 1 and 2 by endogenous PCs. (D, F) Treatment of SA or TA POMC ladder frag-

ment L3 with PNGase F resulted in a 2–3 kDa band shift identifying the upper band of L3 in

lysates and supernatants in B, C, and E as the N-glycosylated form and the lower band as

under-glycosylated form (3u) lacking the N-glycan. (C, E) The N-glycosylated form of the SA
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L3 ladder fragment represents the major form released into the supernatant. L1 is generally

weakly expressed and cannot be detected in supernatants, neither can L2 w/o cl1 nor L3 w/o

cl1 (C), likely due to misfolding and ER retention. (E) Side by side loading with SA ladder frag-

ments identified the lowest band in supernatant of PC-digested SA POMC as cleavage site 2

product (11 kDa), whereas cleavage site 1 product was not detected. The faint band at ca. 12

kDa corresponded to the non N-glycosylated cleavage site 3 fragment (3u) and the more abun-

dant ca. 14 kDa band to its N-glycosylated form (both, supernatants and lysates were detected

on the same blot).

(TIF)

S5 Fig. Detection of PC1/3 and PC2 expression in comparative Tyto alba alba and Strix
aluco POMC cleavage studies. HEK293T cell lysates corresponding to supernatants in Fig 3

were harvested 56 h post transfection and expression of myc-tagged PC1/3 (A) and PC2 (B)

was confirmed in Western blot with myc antibody.

(TIF)

S6 Fig. Detection of POMC, PC1/3 and PC2 in cell lysates from POMC cleavage time

course. (A) Lysates of HEK293T cells transfected with SA or TA HA-tagged POMC variants in

combination with plasmids coding for myc-tagged PC1/3, PC2 and 7B2 were harvested 104 h

post transfection, the latest time point of supernatant sampling to establish POMC cleavage

kinetics (Fig 4). POMC precursor was detected in lysates by Western blot using HA antibody.

PC1/3 and PC2 expression was confirmed with anti-myc antibody. Anti-tubulin antibody was

used to verify loading of comparable amounts of cells. (B) For each of the different POMC var-

iants, cell lysates were loaded next to supernatants. Supernatants were taken from the earliest

time point (28 h post transfection), which contains the highest proportion of uncleaved

POMC (Fig 4B–4F). Only POMC with the fully matured, complex type N-glycan is secreted

into the supernatant in all POMC variants tested (uppermost of the 3 bands in lysates).

(TIF)

S7 Fig. The residual signaling activity of γ2-MSH and γ3-MSH in plasma is MCR specific

and plasma stability decreased compared to CNS stability. (A) Residual γ2- and γ3-MSH

signaling was determined after various incubation times in plasma (0 to 72 h) by measuring

the cAMP response in HEK293T cells expressing TA MC3R and Glo-sensor. In parallel, the

signaling activity of γ-MSH containing plasma samples was also tested on cells transfected

with Glo-sensor and IRES GFP (black traces). In the presence of MC3R, the expected degrada-

tion curves were observed for SA / TA γ2-MSH, for SA γ3-MSH 3 S and for TA γ3-MSH with

5, 13 and 18 serine residues. None of these γ-MSH-containing aliquots yielded a signaling

response above background in the absence of exogenously expressed MC3R. Thus, neither γ2-

or γ3-MSH, nor intermediary γ-MSH breakdown products stimulate cAMP signaling via

endogenously expressed cell surface receptors. (B) SA / TA γ2-MSH and TA γ3-MSH synthetic

peptides with 3, 5, 13 and 18 S were diluted to 2 μM in human CSF and incubated at 37˚C for

various times up to 72 h. Residual γ-MSH activity was determined as described for plasma sta-

bility assays (Fig 6A). All γ3-MSH variants were completely stable in CSF and also γ2-MSH

had a half-life > 7.5 h.

(TIF)

S1 Table. Accession numbers of genes used in this paper.

(DOCX)

S2 Table.Human genetic variants of β- and γ-MSHs corresponding to Tyto Alba (TA) variants.
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S3 Table. Sample and provider names, localisation, year and sex of the samples used in this

study.
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Writing – review & editing: Anne-Lyse Ducrest, Luis M. San-Jose, Nabil G. Seidah, Stefan

Kunz, Alexandre Roulin.

References
1. Roulin A, Ducrest AL. Association between melanism, physiology and behaviour: a role for the melano-

cortin system. Eur J Pharmacol. 2011; 660(1):226–33. Epub 2011/02/09. https://doi.org/10.1016/j.

ejphar.2011.01.036 PMID: 21300052

2. Roulin A, Emaresi G, Bize P, Gasparini J, Piault R, Ducrest AL. Pale and dark reddish melanic tawny

owls differentially regulate the level of blood circulating POMC prohormone in relation to environmental

conditions. Oecologia. 2011; 166(4):913–21. Epub 2011/03/09. https://doi.org/10.1007/s00442-011-

1955-7 PMID: 21384176

3. Caruso V, Lagerstrom MC, Olszewski PK, Fredriksson R, Schioth HB. Synaptic changes induced by

melanocortin signalling. Nature reviews Neuroscience. 2014; 15(2):98–110. Epub 2014/03/04. https://

doi.org/10.1038/nrn3657 PMID: 24588018

4. Zhou A, Bloomquist BT, Mains RE. The prohormone convertases PC1 and PC2 mediate distinct endo-

proteolytic cleavages in a strict temporal order during proopiomelanocortin biosynthetic processing. J

Biol Chem. 1993; 268(3):1763–9. Epub 1993/01/25. PMID: 8380577

5. Benjannet S, Rondeau N, Day R, Chretien M, Seidah NG. PC1 and PC2 are proprotein convertases

capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proc Natl Acad Sci U S A.

1991; 88(9):3564–8. Epub 1991/05/01. https://doi.org/10.1073/pnas.88.9.3564 PMID: 2023902

PLOS ONE Functional characterization of POMC mutations

PLOS ONE | https://doi.org/10.1371/journal.pone.0231163 May 5, 2020 30 / 33

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231163.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231163.s011
https://doi.org/10.1016/j.ejphar.2011.01.036
https://doi.org/10.1016/j.ejphar.2011.01.036
http://www.ncbi.nlm.nih.gov/pubmed/21300052
https://doi.org/10.1007/s00442-011-1955-7
https://doi.org/10.1007/s00442-011-1955-7
http://www.ncbi.nlm.nih.gov/pubmed/21384176
https://doi.org/10.1038/nrn3657
https://doi.org/10.1038/nrn3657
http://www.ncbi.nlm.nih.gov/pubmed/24588018
http://www.ncbi.nlm.nih.gov/pubmed/8380577
https://doi.org/10.1073/pnas.88.9.3564
http://www.ncbi.nlm.nih.gov/pubmed/2023902
https://doi.org/10.1371/journal.pone.0231163


6. D’Agostino G, Diano S. Alpha-melanocyte stimulating hormone: production and degradation. J Mol Med

(Berl). 2010; 88(12):1195–201. Epub 2010/07/10.

7. Abbott CR, Rossi M, Kim M, AlAhmed SH, Taylor GM, Ghatei MA, et al. Investigation of the melanocyte

stimulating hormones on food intake. Lack Of evidence to support a role for the melanocortin-3-recep-

tor. Brain Res. 2000; 869(1–2):203–10. Epub 2000/06/24. https://doi.org/10.1016/s0006-8993(00)

02386-6 PMID: 10865075

8. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, et al. Leptin activates anorexi-

genic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001; 411(6836):480–4.

Epub 2001/05/25. https://doi.org/10.1038/35078085 PMID: 11373681

9. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and

mutations in the melanocortin 4 receptor gene. The New England journal of medicine. 2003; 348

(12):1085–95. Epub 2003/03/21. https://doi.org/10.1056/NEJMoa022050 PMID: 12646665

10. Clark AJ. 60 YEARS OF POMC: The proopiomelanocortin gene: discovery, deletion and disease. Jour-

nal of molecular endocrinology. 2016; 56(4):T27–37. Epub 2015/12/09. https://doi.org/10.1530/JME-

15-0268 PMID: 26643913

11. Hinney A, Becker I, Heibult O, Nottebom K, Schmidt A, Ziegler A, et al. Systematic mutation screening

of the pro-opiomelanocortin gene: identification of several genetic variants including three different

insertions, one nonsense and two missense point mutations in probands of different weight extremes.

The Journal of clinical endocrinology and metabolism. 1998; 83(10):3737–41. Epub 1998/10/13. https://

doi.org/10.1210/jcem.83.10.5298 PMID: 9768693

12. Buono P, Pasanisi F, Nardelli C, Ieno L, Capone S, Liguori R, et al. Six novel mutations in the proopio-

melanocortin and melanocortin receptor 4 genes in severely obese adults living in southern Italy. Clini-

cal chemistry. 2005; 51(8):1358–64. Epub 2005/06/14. https://doi.org/10.1373/clinchem.2005.047886

PMID: 15951321

13. Challis BG, Pritchard LE, Creemers JW, Delplanque J, Keogh JM, Luan J, et al. A missense mutation

disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibil-

ity to early-onset obesity through a novel molecular mechanism. Human molecular genetics. 2002; 11

(17):1997–2004. Epub 2002/08/08. https://doi.org/10.1093/hmg/11.17.1997 PMID: 12165561

14. Biebermann H, Castaneda TR, van Landeghem F, von Deimling A, Escher F, Brabant G, et al. A role

for beta-melanocyte-stimulating hormone in human body-weight regulation. Cell metabolism. 2006; 3

(2):141–6. Epub 2006/02/07. https://doi.org/10.1016/j.cmet.2006.01.007 PMID: 16459315

15. Lee YS, Challis BG, Thompson DA, Yeo GS, Keogh JM, Madonna ME, et al. A POMC variant implicates

beta-melanocyte-stimulating hormone in the control of human energy balance. Cell metabolism. 2006;

3(2):135–40. Epub 2006/02/07. https://doi.org/10.1016/j.cmet.2006.01.006 PMID: 16459314

16. Nogueiras R, Wiedmer P, Perez-Tilve D, Veyrat-Durebex C, Keogh JM, Sutton GM, et al. The central

melanocortin system directly controls peripheral lipid metabolism. The Journal of clinical investigation.

2007; 117(11):3475–88. Epub 2007/09/22. https://doi.org/10.1172/JCI31743 PMID: 17885689

17. Ducrest AL, Keller L, Roulin A. Pleiotropy in the melanocortin system, coloration and behavioural syn-

dromes. Trends in ecology & evolution. 2008; 23(9):502–10. Epub 2008/07/23.

18. Uva V, Packert M, Cibois A, Fumagalli L, Roulin A. Comprehensive molecular phylogeny of barn owls

and relatives (Family: Tytonidae), and their six major Pleistocene radiations. Molecular phylogenetics

and evolution. 2018; 125:127–37. Epub 2018/03/15. https://doi.org/10.1016/j.ympev.2018.03.013

PMID: 29535030

19. Nylander JAA. MrModeltest V2. Program Distributed by the Author. Uppsala University: Evolutionary

Biology Centre; 2004. 581–3 p.

20. Posada D, Buckley T. Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike

Information Criterion and Bayesian Approaches Over Likelihood Ratio Tests. Systematic Biology. 2004;

53(5):793. https://doi.org/10.1080/10635150490522304 PMID: 15545256

21. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian Phylogenetics with BEAUti and the BEAST

1.7. Mol Biol Evol. 2012; 29(8):1969–73. https://doi.org/10.1093/molbev/mss075 PMID: 22367748

22. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, et al. A comprehensive phylog-

eny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015; 526:569. https://doi.

org/10.1038/nature15697 PMID: 26444237

23. Aliabadian M, Alaei-Kakhki N, Mirshamsi O, Nijman V, Roulin A. Phylogeny, biogeography, and diversi-

fication of barn owls (Aves: Strigiformes). Biological Journal of the Linnean Society. 2016; 119(4):904–

18.

24. Rambaut A, Suchard MA, Xie D, Drummond AJ. Tracer v1.6.: Available from <http://beast.bio.ed.ac.uk/

Tracer%3E; 2014.

PLOS ONE Functional characterization of POMC mutations

PLOS ONE | https://doi.org/10.1371/journal.pone.0231163 May 5, 2020 31 / 33

https://doi.org/10.1016/s0006-8993(00)02386-6
https://doi.org/10.1016/s0006-8993(00)02386-6
http://www.ncbi.nlm.nih.gov/pubmed/10865075
https://doi.org/10.1038/35078085
http://www.ncbi.nlm.nih.gov/pubmed/11373681
https://doi.org/10.1056/NEJMoa022050
http://www.ncbi.nlm.nih.gov/pubmed/12646665
https://doi.org/10.1530/JME-15-0268
https://doi.org/10.1530/JME-15-0268
http://www.ncbi.nlm.nih.gov/pubmed/26643913
https://doi.org/10.1210/jcem.83.10.5298
https://doi.org/10.1210/jcem.83.10.5298
http://www.ncbi.nlm.nih.gov/pubmed/9768693
https://doi.org/10.1373/clinchem.2005.047886
http://www.ncbi.nlm.nih.gov/pubmed/15951321
https://doi.org/10.1093/hmg/11.17.1997
http://www.ncbi.nlm.nih.gov/pubmed/12165561
https://doi.org/10.1016/j.cmet.2006.01.007
http://www.ncbi.nlm.nih.gov/pubmed/16459315
https://doi.org/10.1016/j.cmet.2006.01.006
http://www.ncbi.nlm.nih.gov/pubmed/16459314
https://doi.org/10.1172/JCI31743
http://www.ncbi.nlm.nih.gov/pubmed/17885689
https://doi.org/10.1016/j.ympev.2018.03.013
http://www.ncbi.nlm.nih.gov/pubmed/29535030
https://doi.org/10.1080/10635150490522304
http://www.ncbi.nlm.nih.gov/pubmed/15545256
https://doi.org/10.1093/molbev/mss075
http://www.ncbi.nlm.nih.gov/pubmed/22367748
https://doi.org/10.1038/nature15697
https://doi.org/10.1038/nature15697
http://www.ncbi.nlm.nih.gov/pubmed/26444237
http://beast.bio.ed.ac.uk/Tracer%3E
http://beast.bio.ed.ac.uk/Tracer%3E
https://doi.org/10.1371/journal.pone.0231163


25. Py I, Ducrest AL, Duvoisin N, Fumagalli L, Roulin A. Ultraviolet reflectance in a melanin-based plumage

trait is heritable. Evolutionary Ecology Research. 2006; 8(3):483–91.

26. San-Jose LM, Ducrest AL, Ducret V, Simon C, Richter H, Wakamatsu K, et al. MC1R variants affect the

expression of melanocortin and melanogenic genes and the association between melanocortin genes

and coloration. Molecular ecology. 2017; 26(1):259–76. Epub 2016/09/25. https://doi.org/10.1111/mec.

13861 PMID: 27664794

27. Emaresi G, Ducrest AL, Bize P, Richter H, Simon C, Roulin A. Pleiotropy in the melanocortin system:

expression levels of this system are associated with melanogenesis and pigmentation in the tawny owl

(Strix aluco). Molecular ecology. 2013; 22(19):4915–30. Epub 2013/09/17. https://doi.org/10.1111/mec.

12438 PMID: 24033481

28. Mbikay M, Grant SG, Sirois F, Tadros H, Skowronski J, Lazure C, et al. cDNA sequence of neuroendo-

crine protein 7B2 expressed in beta cell tumors of transgenic mice. International journal of peptide and

protein research. 1989; 33(1):39–45. Epub 1989/01/01. https://doi.org/10.1111/j.1399-3011.1989.

tb00681.x PMID: 2542174

29. Cone RD. Studies on the physiological functions of the melanocortin system. Endocr Rev. 2006; 27

(7):736–49. https://doi.org/10.1210/er.2006-0034 PMID: 17077189

30. Binkowski B, Fan F, Wood K. Engineered luciferases for molecular sensing in living cells. Curr Opin Bio-

technol. 2009; 20(1):14–8. https://doi.org/10.1016/j.copbio.2009.02.013 PMID: 19299118

31. Seidah NG, Chretien M. Complete amino acid sequence of a human pituitary glycopeptide: an important

maturation product of pro-opiomelanocortin. Proc Natl Acad Sci U S A. 1981; 78(7):4236–40. Epub

1981/07/01. https://doi.org/10.1073/pnas.78.7.4236 PMID: 6945581

32. Lowry P. 60 YEARS OF POMC: Purification and biological characterisation of melanotrophins and corti-

cotrophins. Journal of molecular endocrinology. 2016; 56(4):T1–T12. Epub 2015/12/09. https://doi.org/

10.1530/JME-15-0260 PMID: 26643914

33. Ekman R, Hakanson R, Larsson I, Sundler F, Thorell JI. Radioimmunoassay of pro-gamma-melanotro-

pin, the amino-terminal fragment of proopiolipomelanocortin. Endocrinology. 1982; 111(2):578–83.

Epub 1982/08/01. https://doi.org/10.1210/endo-111-2-578 PMID: 7094886

34. Tian S, Huajun W, Wu J. Computational prediction of furin cleavage sites by a hybrid method and under-

standing mechanism underlying diseases. Sci Rep. 2012; 2:261. https://doi.org/10.1038/srep00261

PMID: 22355773

35. Muller L, Lindberg I. The cell biology of the prohormone convertases PC1 and PC2. Prog Nucleic Acid

Res Mol Biol. 1999; 63:69–108. https://doi.org/10.1016/s0079-6603(08)60720-5 PMID: 10506829

36. Zhu X, Lindberg I. 7B2 facilitates the maturation of proPC2 in neuroendocrine cells and is required for

the expression of enzymatic activity. J Cell Biol. 1995; 129(6):1641–50. https://doi.org/10.1083/jcb.129.

6.1641 PMID: 7790360

37. Mbikay M, Seidah NG, Chretien M. Neuroendocrine secretory protein 7B2: structure, expression and

functions. The Biochemical journal. 2001; 357(Pt 2):329–42. Epub 2001/07/06. https://doi.org/10.1042/

0264-6021:3570329 PMID: 11439082

38. Bessonnard S, Mesnard D, Constam DB. PC7 and the related proteases Furin and Pace4 regulate E-

cadherin function during blastocyst formation. The Journal of cell biology. 2015; 210(7):1185–97. Epub

2015/09/30. https://doi.org/10.1083/jcb.201503042 PMID: 26416966

39. Seidah NG, Rochemont J, Hamelin J, Lis M, Chretien M. Primary structure of the major human pituitary

pro-opiomelanocortin NH2-terminal glycopeptide. Evidence for an aldosterone-stimulating activity. The

Journal of biological chemistry. 1981; 256(15):7977–84. Epub 1981/08/10. PMID: 6267033

40. Siciliano RA, Morris HR, McDowell RA, Azadi P, Rogers ME, Bennett HP, et al. The Lewis x epitope is a

major non-reducing structure in the sulphated N-glycans attached to Asn-65 of bovine pro-opiomelano-

cortin. Glycobiology. 1993; 3(3):225–39. https://doi.org/10.1093/glycob/3.3.225 PMID: 7689367

41. Bennett HP, Seidah NG, Benjannet S, Solomon S, Chretien M. Reinvestigation of the disulfide bridge

arrangement in human pro-opiomelanocortin N-terminal segment (hNT 1–76). International journal of

peptide and protein research. 1986; 27(3):306–13. Epub 1986/03/01. https://doi.org/10.1111/j.1399-

3011.1986.tb01825.x PMID: 3519485

42. Schwyzer R. ACTH: a short introductory review. Annals of the New York Academy of Sciences. 1977;

297:3–26. Epub 1977/10/28. https://doi.org/10.1111/j.1749-6632.1977.tb41843.x PMID: 211904

43. Samuels ME, Gallo-Payet N, Pinard S, Hasselmann C, Magne F, Patry L, et al. Bioinactive ACTH caus-

ing glucocorticoid deficiency. The Journal of clinical endocrinology and metabolism. 2013; 98(2):736–

42. Epub 2013/01/08. https://doi.org/10.1210/jc.2012-3199 PMID: 23293326

44. Dubern B, Lubrano-Berthelier C, Mencarelli M, Ersoy B, Frelut ML, Bougle D, et al. Mutational analysis

of the pro-opiomelanocortin gene in French obese children led to the identification of a novel deleterious

heterozygous mutation located in the alpha-melanocyte stimulating hormone domain. Pediatric

PLOS ONE Functional characterization of POMC mutations

PLOS ONE | https://doi.org/10.1371/journal.pone.0231163 May 5, 2020 32 / 33

https://doi.org/10.1111/mec.13861
https://doi.org/10.1111/mec.13861
http://www.ncbi.nlm.nih.gov/pubmed/27664794
https://doi.org/10.1111/mec.12438
https://doi.org/10.1111/mec.12438
http://www.ncbi.nlm.nih.gov/pubmed/24033481
https://doi.org/10.1111/j.1399-3011.1989.tb00681.x
https://doi.org/10.1111/j.1399-3011.1989.tb00681.x
http://www.ncbi.nlm.nih.gov/pubmed/2542174
https://doi.org/10.1210/er.2006-0034
http://www.ncbi.nlm.nih.gov/pubmed/17077189
https://doi.org/10.1016/j.copbio.2009.02.013
http://www.ncbi.nlm.nih.gov/pubmed/19299118
https://doi.org/10.1073/pnas.78.7.4236
http://www.ncbi.nlm.nih.gov/pubmed/6945581
https://doi.org/10.1530/JME-15-0260
https://doi.org/10.1530/JME-15-0260
http://www.ncbi.nlm.nih.gov/pubmed/26643914
https://doi.org/10.1210/endo-111-2-578
http://www.ncbi.nlm.nih.gov/pubmed/7094886
https://doi.org/10.1038/srep00261
http://www.ncbi.nlm.nih.gov/pubmed/22355773
https://doi.org/10.1016/s0079-6603(08)60720-5
http://www.ncbi.nlm.nih.gov/pubmed/10506829
https://doi.org/10.1083/jcb.129.6.1641
https://doi.org/10.1083/jcb.129.6.1641
http://www.ncbi.nlm.nih.gov/pubmed/7790360
https://doi.org/10.1042/0264-6021:3570329
https://doi.org/10.1042/0264-6021:3570329
http://www.ncbi.nlm.nih.gov/pubmed/11439082
https://doi.org/10.1083/jcb.201503042
http://www.ncbi.nlm.nih.gov/pubmed/26416966
http://www.ncbi.nlm.nih.gov/pubmed/6267033
https://doi.org/10.1093/glycob/3.3.225
http://www.ncbi.nlm.nih.gov/pubmed/7689367
https://doi.org/10.1111/j.1399-3011.1986.tb01825.x
https://doi.org/10.1111/j.1399-3011.1986.tb01825.x
http://www.ncbi.nlm.nih.gov/pubmed/3519485
https://doi.org/10.1111/j.1749-6632.1977.tb41843.x
http://www.ncbi.nlm.nih.gov/pubmed/211904
https://doi.org/10.1210/jc.2012-3199
http://www.ncbi.nlm.nih.gov/pubmed/23293326
https://doi.org/10.1371/journal.pone.0231163


research. 2008; 63(2):211–6. Epub 2007/12/20. https://doi.org/10.1203/PDR.0b013e31815ed62b

PMID: 18091355

45. Lariviere N, Seidah NG, De Serres G, Rochemont J, Chretien M. Two glycosylation sites on the N-termi-

nal segment of porcine pars distalis pro-opiomelanocortin. FEBS letters. 1980; 122(2):279–82. Epub

1980/12/29. https://doi.org/10.1016/0014-5793(80)80456-x PMID: 6258982

46. Bachert C, Linstedt AD. A sensor of protein O-glycosylation based on sequential processing in the Golgi

apparatus. Traffic. 2013; 14(1):47–56. https://doi.org/10.1111/tra.12019 PMID: 23046148

47. Bohlen P, Esch F, Shibasaki T, Baird A, Ling N, Guillemin R. Isolation and characterization of a gamma

1-melanotropin-like peptide from bovine neurointermediate pituitary. FEBS letters. 1981; 128(1):67–70.

Epub 1981/06/01. https://doi.org/10.1016/0014-5793(81)81081-2 PMID: 7274457

48. Ekman R, Bjartell A, Lisander B, Edvinsson L. Gamma 2-MSH immunoreactivity in the human heart.

Life sciences. 1989; 45(9):787–92. Epub 1989/01/01. https://doi.org/10.1016/0024-3205(89)90171-9

PMID: 2770421

49. Marks DL, Hruby V, Brookhart G, Cone RD. The regulation of food intake by selective stimulation of the

type 3 melanocortin receptor (MC3R). Peptides. 2006; 27(2):259–64. Epub 2005/11/09. https://doi.org/

10.1016/j.peptides.2005.01.025 PMID: 16274853

50. Bicknell KA, Harmer SC, Yiangson S, Lockwood W, Bicknell AB. Lys-gamma3-MSH: a global regulator

of hormone sensitive lipase activity? Mol Cell Endocrinol. 2009; 300(1–2):71–6. Epub 2008/11/04.

https://doi.org/10.1016/j.mce.2008.09.032 PMID: 18977407

51. Fricke K, Schulz A, John H, Forssmann WG, Maronde E. Isolation and characterization of a novel proo-

piomelanocortin-derived peptide from hemofiltrate of chronic renal failure patients. Endocrinology.

2005; 146(4):2060–8. Epub 2005/01/15. https://doi.org/10.1210/en.2004-1097 PMID: 15650078

52. Harmer SC, Pepper DJ, Cooke K, Bennett HP, Bicknell AB. Evidence of a possible role for Lys-

gamma3-MSH in the regulation of adipocyte function. J Endocrinol. 2008; 196(1):149–58. Epub 2008/

01/09. https://doi.org/10.1677/JOE-07-0391 PMID: 18180326

53. Getting SJ, Allcock GH, Flower R, Perretti M. Natural and synthetic agonists of the melanocortin recep-

tor type 3 possess anti-inflammatory properties. J Leukoc Biol. 2001; 69(1):98–104. Epub 2001/02/24.

PMID: 11200074

54. Catania A, Lonati C, Sordi A, Carlin A, Leonardi P, Gatti S. The melanocortin system in control of inflam-

mation. ScientificWorldJournal. 2010; 10:1840–53. Epub 2010/09/21. https://doi.org/10.1100/tsw.2010.

173 PMID: 20852827

55. Raffan E, Dennis RJ, O’Donovan CJ, Becker JM, Scott RA, Smith SP, et al. A Deletion in the Canine

POMC Gene Is Associated with Weight and Appetite in Obesity-Prone Labrador Retriever Dogs. Cell

metabolism. 2016; 23(5):893–900. Epub 2016/05/10. https://doi.org/10.1016/j.cmet.2016.04.012

PMID: 27157046

PLOS ONE Functional characterization of POMC mutations

PLOS ONE | https://doi.org/10.1371/journal.pone.0231163 May 5, 2020 33 / 33

https://doi.org/10.1203/PDR.0b013e31815ed62b
http://www.ncbi.nlm.nih.gov/pubmed/18091355
https://doi.org/10.1016/0014-5793(80)80456-x
http://www.ncbi.nlm.nih.gov/pubmed/6258982
https://doi.org/10.1111/tra.12019
http://www.ncbi.nlm.nih.gov/pubmed/23046148
https://doi.org/10.1016/0014-5793(81)81081-2
http://www.ncbi.nlm.nih.gov/pubmed/7274457
https://doi.org/10.1016/0024-3205(89)90171-9
http://www.ncbi.nlm.nih.gov/pubmed/2770421
https://doi.org/10.1016/j.peptides.2005.01.025
https://doi.org/10.1016/j.peptides.2005.01.025
http://www.ncbi.nlm.nih.gov/pubmed/16274853
https://doi.org/10.1016/j.mce.2008.09.032
http://www.ncbi.nlm.nih.gov/pubmed/18977407
https://doi.org/10.1210/en.2004-1097
http://www.ncbi.nlm.nih.gov/pubmed/15650078
https://doi.org/10.1677/JOE-07-0391
http://www.ncbi.nlm.nih.gov/pubmed/18180326
http://www.ncbi.nlm.nih.gov/pubmed/11200074
https://doi.org/10.1100/tsw.2010.173
https://doi.org/10.1100/tsw.2010.173
http://www.ncbi.nlm.nih.gov/pubmed/20852827
https://doi.org/10.1016/j.cmet.2016.04.012
http://www.ncbi.nlm.nih.gov/pubmed/27157046
https://doi.org/10.1371/journal.pone.0231163

