168 research outputs found

    Symmetry Breakdown in Franckeite: Spontaneous Strain, Rippling, and Interlayer Moire

    Get PDF
    Franckeite is a naturally occurring layered mineral with a structure composed of alternating stacks of SnS2-like and PbS-like layers. Although this superlattice is composed of a sequence of isotropic two-dimensional layers, it exhibits a spontaneous rippling that makes the material structurally anisotropic. We demonstrate that this rippling comes hand in hand with an inhomogeneous in-plane strain profile and anisotropic electrical, vibrational, and optical properties. We argue that this symmetry breakdown results from a spatial modulation of the van der Waals interaction between layers due to the SnS2-like and PbS-like lattices incommensurability

    Real-time continuous measurement of lactate through a minimally invasive microneedle patch: a phase I clinical study

    Get PDF
    Introduction Determination of blood lactate levels supports decision-making in a range of medical conditions. Invasive blood-sampling and laboratory access are often required, and measurements provide a static profile at each instance. We conducted a phase I clinical study validating performance of a microneedle patch for minimally invasive, continuous lactate measurement in healthy volunteers. Methods Five healthy adult participants wore a solid microneedle biosensor patch on their forearms and undertook aerobic exercise for 30 min. The microneedle biosensor quantifies lactate concentrations in interstitial fluid within the dermis continuously and in real-time. Outputs were captured as sensor current and compared with lactate concentrations from venous blood and microdialysis. Results The biosensor was well-tolerated. Participants generated a median peak venous lactate of 9.25 mmol/L (IQR 6.73–10.71). Microdialysate concentrations of lactate closely correlated with blood. Microneedle biosensor current followed venous lactate concentrations and dynamics, with good agreement seen in all participants. There was an estimated lag-time of 5 min (IQR −4 to 11 min) between microneedle and blood lactate measurements. Conclusion This study provides first-in-human data on use of a minimally invasive microneedle patch for continuous lactate measurement, providing dynamic monitoring. This low-cost platform offers distinct advantages to frequent blood sampling in a wide range of clinical settings, especially where access to laboratory services is limited or blood sampling is infeasible. Implementation of this technology in healthcare settings could support personalised decision-making in a variety of hospital and community settings

    Mussel-Inspired Anisotropic Nanocellulose and Silver Nanoparticle Composite with Improved Mechanical Properties, Electrical Conductivity and Antibacterial Activity

    Get PDF
    Materials for wearable devices, tissue engineering and bio-sensing applications require both antibacterial activity to prevent bacterial infection and biofilm formation, and electrical conductivity to electric signals inside and outside of the human body. Recently, cellulose nanofibers have been utilized for various applications but cellulose itself has neither antibacterial activity nor conductivity. Here, an antibacterial and electrically conductive composite was formed by generating catechol mediated silver nanoparticles (AgNPs) on the surface of cellulose nanofibers. The chemically immobilized catechol moiety on the nanofibrous cellulose network reduced Ag+ to form AgNPs on the cellulose nanofiber. The AgNPs cellulose composite showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria. In addition, the catechol conjugation and the addition of AgNP induced anisotropic self-alignment of the cellulose nanofibers which enhances electrical and mechanical properties of the composite. Therefore, the composite containing AgNPs and anisotropic aligned the cellulose nanofiber may be useful for biomedical applications.open11128sciescopu

    Long-term medical utilization following ventilator-associated pneumonia in acute stroke and traumatic brain injury patients: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The economic burden of ventilator-associated pneumonia (VAP) during the index hospitalization has been confirmed in previous studies. However, the long-term economic impact is still unclear. The aim of this study is to examine the effect of VAP on medical utilization in the long term.</p> <p>Methods</p> <p>This is a retrospective case-control study. Study subjects were patients experiencing their first traumatic brain injury, acute hemorrhagic stroke, or acute ischemic stroke during 2004. All subjects underwent endotracheal intubation in the emergency room (ER) on the day of admission or the day before admission, were transferred to the intensive care unit (ICU) and were mechanically ventilated for 48 hours or more. A total of 943 patients who developed VAP were included as the case group, and each was matched with two control patients without VAP by age ( ± 2 years), gender, diagnosis, date of admission ( ± 1 month) and hospital size, resulting in a total of 2,802 patients in the study. Using robust regression and Poisson regression models we examined the effect of VAP on medical utilization including hospitalization expenses, outpatient expenses, total medical expenses, number of ER visits, number of readmissions, number of hospitalization days and number of ICU days, during the index hospitalization and during the following 2-year period.</p> <p>Results</p> <p>Patients in the VAP group had higher hospitalization expenses, longer length of stay in hospital and in ICU, and a greater number of readmissions than the control group patients.</p> <p>Conclusions</p> <p>VAP has a significant impact on medical expenses and utilization, both during the index hospitalization during which VAP developed and in the longer term.</p

    Pch2 Acts through Xrs2 and Tel1/ATM to Modulate Interhomolog Bias and Checkpoint Function during Meiosis

    Get PDF
    Proper segregation of chromosomes during meiosis requires the formation and repair of double-strand breaks (DSBs) to form crossovers. Repair is biased toward using the homolog as a substrate rather than the sister chromatid. Pch2 is a conserved member of the AAA+-ATPase family of proteins and is implicated in a wide range of meiosis-specific processes including the recombination checkpoint, maturation of the chromosome axis, crossover control, and synapsis. We demonstrate a role for Pch2 in promoting and regulating interhomolog bias and the meiotic recombination checkpoint in response to unprocessed DSBs through the activation of axial proteins Hop1 and Mek1 in budding yeast. We show that Pch2 physically interacts with the putative BRCT repeats in the N-terminal region of Xrs2, a member of the MRX complex that acts at sites of unprocessed DSBs. Pch2, Xrs2, and the ATM ortholog Tel1 function in the same pathway leading to the phosphorylation of Hop1, independent of Rad17 and the ATR ortholog Mec1, which respond to the presence of single-stranded DNA. An N-terminal deletion of Xrs2 recapitulates the pch2Δ phenotypes for signaling unresected breaks. We propose that interaction with Xrs2 may enable Pch2 to remodel chromosome structure adjacent to the site of a DSB and thereby promote accessibility of Hop1 to the Tel1 kinase. In addition, Xrs2, like Pch2, is required for checkpoint-mediated delay conferred by the failure to synapse chromosomes

    The Recombinases Rad51 and Dmc1 Play Distinct Roles in DNA Break Repair and Recombination Partner Choice in the Meiosis of Tetrahymena

    Get PDF
    Repair of programmed DNA double-strand breaks (DSBs) by meiotic recombination relies on the generation of flanking 3′ single-stranded DNA overhangs and their interaction with a homologous double-stranded DNA template. In various common model organisms, the ubiquitous strand exchange protein Rad51 and its meiosis-specific homologue Dmc1 have been implicated in the joint promotion of DNA–strand exchange at meiotic recombination sites. However, the division of labor between these two recombinases is still a puzzle. Using RNAi and gene-disruption experiments, we have studied their roles in meiotic recombination and chromosome pairing in the ciliated protist Tetrahymena as an evolutionarily distant meiotic model. Cytological and electrophoresis-based assays for DSBs revealed that, without Rad51p, DSBs were not repaired. However, in the absence of Dmc1p, efficient Rad51p-dependent repair took place, but crossing over was suppressed. Immunostaining and protein tagging demonstrated that only Dmc1p formed strong DSB–dependent foci on meiotic chromatin, whereas the distribution of Rad51p was diffuse within nuclei. This suggests that meiotic nucleoprotein filaments consist primarily of Dmc1p. Moreover, a proximity ligation assay confirmed that little if any Rad51p forms mixed nucleoprotein filaments with Dmc1p. Dmc1p focus formation was independent of the presence of Rad51p. The absence of Dmc1p did not result in compensatory assembly of Rad51p repair foci, and even artificial DNA damage by UV failed to induce Rad51p foci in meiotic nuclei, while it did so in somatic nuclei within one and the same cell. The observed interhomologue repair deficit in dmc1Δ meiosis is consistent with a requirement for Dmc1p in promoting the homologue as the preferred recombination partner. We propose that relatively short and/or transient Rad51p nucleoprotein filaments are sufficient for intrachromosomal recombination, whereas long nucleoprotein filaments consisting primarily of Dmc1p are required for interhomolog recombination

    Pch2 Links Chromosome Axis Remodeling at Future Crossover Sites and Crossover Distribution during Yeast Meiosis

    Get PDF
    Segregation of homologous chromosomes during meiosis I depends on appropriately positioned crossovers/chiasmata. Crossover assurance ensures at least one crossover per homolog pair, while interference reduces double crossovers. Here, we have investigated the interplay between chromosome axis morphogenesis and non-random crossover placement. We demonstrate that chromosome axes are structurally modified at future crossover sites as indicated by correspondence between crossover designation marker Zip3 and domains enriched for axis ensemble Hop1/Red1. This association is first detected at the zygotene stage, persists until double Holliday junction resolution, and is controlled by the conserved AAA+ ATPase Pch2. Pch2 further mediates crossover interference, although it is dispensable for crossover formation at normal levels. Thus, interference appears to be superimposed on underlying mechanisms of crossover formation. When recombination-initiating DSBs are reduced, Pch2 is also required for viable spore formation, consistent with further functions in chiasma formation. pch2Δ mutant defects in crossover interference and spore viability at reduced DSB levels are oppositely modulated by temperature, suggesting contributions of two separable pathways to crossover control. Roles of Pch2 in controlling both chromosome axis morphogenesis and crossover placement suggest linkage between these processes. Pch2 is proposed to reorganize chromosome axes into a tiling array of long-range crossover control modules, resulting in chiasma formation at minimum levels and with maximum spacing

    Infective endocarditis in intravenous drug abusers: an update

    Get PDF
    Infective endocarditis despite advances in diagnosis remains a common cause of hospitalization, with high morbidity and mortality rates. Through literature review it is possible to conclude that polymicrobial endocarditis occurs mainly in intravenous drug abusers with predominance in the right side of the heart, often with tricuspid valve involvement. This fact can be associated with the type of drug used by the patients; therefore, knowledge of the patient's history is critical for adjustment of the therapy. It is also important to emphasize that the most common combinations of organisms in polymicrobial infective endocarditis are: Staphylococcus aureus, Streptococcus pneumonia and Pseudomonas aeruginosa, as well as mixed cultures of Candida spp. and bacteria. A better understanding of the epidemiology and associated risk factors are required in order to develop an efficient therapy, although PE studies are difficult to perform due to the rarity of cases and lack of prospective cohorts.This work was supported by Portuguese Foundation for Science and Technology (FCT) through the grants SFRH/BPD/47693/2008, SFRH/BPD/20987/2004 and SFRH/BPD/72632/2010 attributed to Claudia Sousa, Claudia Botelho and Diana Rodrigues, respectively

    Lack of Galectin-3 Drives Response to Paracoccidioides brasiliensis toward a Th2-Biased Immunity

    Get PDF
    There is recent evidence that galectin-3 participates in immunity to infections, mostly by tuning cytokine production. We studied the balance of Th1/Th2 responses to P. brasiliensis experimental infection in the absence of galectin-3. The intermediate resistance to the fungal infection presented by C57BL/6 mice, associated with the development of a mixed type of immunity, was replaced with susceptibility to infection and a Th2-polarized immune response, in galectin-3-deficient (gal3−/−) mice. Such a response was associated with defective inflammatory and delayed type hypersensitivity (DTH) reactions, high IL-4 and GATA-3 expression and low nitric oxide production in the organs of infected animals. Gal3−/− macrophages exhibited higher TLR2 transcript levels and IL-10 production compared to wild-type macrophages after stimulation with P. brasiliensis antigens. We hypothesize that, during an in vivo P. brasiliensis infection, galectin-3 exerts its tuning role on immunity by interfering with the generation of regulatory macrophages, thus hindering the consequent Th2-polarized type of response

    The pch2Δ Mutation in Baker's Yeast Alters Meiotic Crossover Levels and Confers a Defect in Crossover Interference

    Get PDF
    Pch2 is a widely conserved protein that is required in baker's yeast for the organization of meiotic chromosome axes into specific domains. We provide four lines of evidence suggesting that it regulates the formation and distribution of crossover events required to promote chromosome segregation at Meiosis I. First, pch2Δ mutants display wild-type crossover levels on a small (III) chromosome, but increased levels on larger (VII, VIII, XV) chromosomes. Second, pch2Δ mutants show defects in crossover interference. Third, crossovers observed in pch2Δ require both Msh4-Msh5 and Mms4-Mus81 functions. Lastly, the pch2Δ mutation decreases spore viability and disrupts crossover interference in spo11 hypomorph strains that have reduced levels of meiosis-induced double-strand breaks. Based on these and previous observations, we propose a model in which Pch2 functions at an early step in crossover control to ensure that every homolog pair receives an obligate crossover
    corecore