5,401 research outputs found
Low Head Power Generation With Bulb Turbines
Because of uncertainties, delays, and high costs associated with alternative electric energy sources, many agencies responsible for generation of electrical power are investigating means of replacing or supplementing their existing hydroelectric facilities. In the head range between 10 and 60 feet, the bulb-type generating unit, in which the generator is enclosed in a metal capsule within the water passage, has many advantages, including higher efficiency and lower cost, over other types of turbines. Two of the municipalities in the United States which have recently conducted feasibility studies for installing bulb turbines in their systems are the City of Idaho Falls, Idaho, and the City of Vanceburg, Kentucky. For the City of Idaho Falls, International Engineering Company, Inc. prepared feasibility studies which demonstrated that for 7 MW units installed in existing plants, (I) bulb turbines are more economical than comparable conventional (vertical shaft Kaplan) units, (2) installation of new bulb turbine units is preferable to rehabilitating and/or relocating the existing generating units, and (3) the cost of energy generated by the proposed bulb turbine installations would be less than that from alternative sources of energy. At locations at existing dams on the Ohio River, the Vanceburg Electric Light, Heat and Power System studied installations comprised of 3 - 23 MW bulb turbines per plant and also found that the cost of energy from these facilities would be less than from other sources
Imaging a 1-electron InAs quantum dot in an InAs/InP nanowire
Nanowire heterostructures define high-quality few-electron quantum dots for
nanoelectronics, spintronics and quantum information processing. We use a
cooled scanning probe microscope (SPM) to image and control an InAs quantum dot
in an InAs/InP nanowire, using the tip as a movable gate. Images of dot
conductance vs. tip position at T = 4.2 K show concentric rings as electrons
are added, starting with the first electron. The SPM can locate a dot along a
nanowire and individually tune its charge, abilities that will be very useful
for the control of coupled nanowire dots
Using ultra-thin parylene films as an organic gate insulator in nanowire field-effect transistors
We report the development of nanowire field-effect transistors featuring an
ultra-thin parylene film as a polymer gate insulator. The room temperature,
gas-phase deposition of parylene is an attractive alternative to oxide
insulators prepared at high temperatures using atomic layer deposition. We
discuss our custom-built parylene deposition system, which is designed for
reliable and controlled deposition of <100 nm thick parylene films on III-V
nanowires standing vertically on a growth substrate or horizontally on a device
substrate. The former case gives conformally-coated nanowires, which we used to
produce functional -gate and gate-all-around structures. These give
sub-threshold swings as low as 140 mV/dec and on/off ratios exceeding at
room temperature. For the gate-all-around structure, we developed a novel
fabrication strategy that overcomes some of the limitations with previous
lateral wrap-gate nanowire transistors. Finally, we show that parylene can be
deposited over chemically-treated nanowire surfaces; a feature generally not
possible with oxides produced by atomic layer deposition due to the surface
`self-cleaning' effect. Our results highlight the potential for parylene as an
alternative ultra-thin insulator in nanoscale electronic devices more broadly,
with potential applications extending into nanobioelectronics due to parylene's
well-established biocompatible properties
Ordering in spatial evolutionary games for pairwise collective strategy updates
Evolutionary games are studied with players located on a square
lattice. During the evolution the randomly chosen neighboring players try to
maximize their collective income by adopting a random strategy pair with a
probability dependent on the difference of their summed payoffs between the
final and initial state assuming quenched strategies in their neighborhood. In
the case of the anti-coordination game this system behaves alike an
anti-ferromagnetic kinetic Ising model. Within a wide region of social dilemmas
this dynamical rule supports the formation of similar spatial arrangement of
the cooperators and defectors ensuring the optimum total payoff if the
temptation to choose defection exceeds a threshold value dependent on the
sucker's payoff. The comparison of the results with those achieved for pairwise
imitation and myopic strategy updates has indicated the relevant advantage of
pairwise collective strategy update in the maintenance of cooperation.Comment: 9 pages, 6 figures; accepted for publication in Physical Review
Quantum point contact due to Fermi-level pinning and doping profiles in semiconductor nanocolumns
We show that nanoscale doping profiles inside a nanocolumn in combination
with Fermi-level pinning at the surface give rise to the formation of a
saddle-point in the potential profile. Consequently, the lateral confinement
inside the channel varies along the transport direction, yielding an embedded
quantum point contact. An analytical estimation of the quantization energies
will be given
Test of a Jastrow-type wavefunction for a trapped few-body system in one dimension
For a system with interacting quantum mechanical particles in a
one-dimensional harmonic oscillator, a trial wavefunction with simple structure
based on the solution of the corresponding two-particle system is suggested and
tested numerically. With the inclusion of a scaling parameter for the distance
between particles, at least for the very small systems tested here the ansatz
gives a very good estimate of the ground state energy, with the error being of
the order of ~1% of the gap to the first excited state
Testing Consumer Rationality using Perfect Graphs and Oriented Discs
Given a consumer data-set, the axioms of revealed preference proffer a binary
test for rational behaviour. A natural (non-binary) measure of the degree of
rationality exhibited by the consumer is the minimum number of data points
whose removal induces a rationalisable data-set.We study the computational
complexity of the resultant consumer rationality problem in this paper. This
problem is, in the worst case, equivalent (in terms of approximation) to the
directed feedback vertex set problem. Our main result is to obtain an exact
threshold on the number of commodities that separates easy cases and hard
cases. Specifically, for two-commodity markets the consumer rationality problem
is polynomial time solvable; we prove this via a reduction to the vertex cover
problem on perfect graphs. For three-commodity markets, however, the problem is
NP-complete; we prove thisusing a reduction from planar 3-SAT that is based
upon oriented-disc drawings
The Combinatorial World (of Auctions) According to GARP
Revealed preference techniques are used to test whether a data set is
compatible with rational behaviour. They are also incorporated as constraints
in mechanism design to encourage truthful behaviour in applications such as
combinatorial auctions. In the auction setting, we present an efficient
combinatorial algorithm to find a virtual valuation function with the optimal
(additive) rationality guarantee. Moreover, we show that there exists such a
valuation function that both is individually rational and is minimum (that is,
it is component-wise dominated by any other individually rational, virtual
valuation function that approximately fits the data). Similarly, given upper
bound constraints on the valuation function, we show how to fit the maximum
virtual valuation function with the optimal additive rationality guarantee. In
practice, revealed preference bidding constraints are very demanding. We
explain how approximate rationality can be used to create relaxed revealed
preference constraints in an auction. We then show how combinatorial methods
can be used to implement these relaxed constraints. Worst/best-case welfare
guarantees that result from the use of such mechanisms can be quantified via
the minimum/maximum virtual valuation function
Power Utility Maximization in Discrete-Time and Continuous-Time Exponential Levy Models
Consider power utility maximization of terminal wealth in a 1-dimensional
continuous-time exponential Levy model with finite time horizon. We discretize
the model by restricting portfolio adjustments to an equidistant discrete time
grid. Under minimal assumptions we prove convergence of the optimal
discrete-time strategies to the continuous-time counterpart. In addition, we
provide and compare qualitative properties of the discrete-time and
continuous-time optimizers.Comment: 18 pages, to appear in Mathematical Methods of Operations Research.
The final publication is available at springerlink.co
- …