86 research outputs found

    Digital biosurveillance for zoonotic disease detection in kenya

    Get PDF
    Infectious disease surveillance is crucial for early detection and situational awareness of disease outbreaks. Digital biosurveillance monitors large volumes of open-source data to flag potential health threats. This study investigates the potential of digital surveillance in the detection of the top five priority zoonotic diseases in Kenya: Rift Valley fever (RVF), anthrax, rabies, brucellosis, and trypanosomiasis. Open-source disease events reported between August 2016 and October 2020 were collected and key event-specific information was extracted using a newly developed disease event taxonomy. A total of 424 disease reports encompassing 55 unique events belonging to anthrax (43.6%), RVF (34.6%), and rabies (21.8%) were identified. Most events were first reported by news media (78.2%) followed by international health organizations (16.4%). News media reported the events 4.1 (±4.7) days faster than the official reports. There was a positive association between official reporting and RVF events (odds ratio (OR) 195.5, 95% confidence interval (CI); 24.01–4756.43, p p = 0.030). This study highlights the usefulness of local news in the detection of potentially neglected zoonotic disease events and the importance of digital biosurveillance in resource-limited settings

    The potential for the double risk of rabies and antimicrobial resistance in a high rabies endemic setting:Detection of antibiotic resistance in bacterial isolates from infected dog bite wounds in Uganda

    Get PDF
    BACKGROUND: Post-exposure treatment for dog bites in humans aims at alleviating the risk of rabies and promoting wound healing. Wound healing may be complicated by bacteria. This study identified the different bacteria and their antibiotic susceptibilities in infected dog bite wounds (DBWs) in Uganda. METHODS: A cross-sectional study was conducted among 376 dog bite patients. Wound swabs from patients with infected DBWs were collected and inoculated into recommended media. They were cultured for both aerobic and anaerobic bacteria. All isolated bacteria were identified based on colony characteristics, gram stain, and standard biochemical tests. Molecular identification was performed for strains that were resistant to three or more antibiotics. Antibiotic susceptibility testing was conducted using the disc diffusion method following the modified Kirby-Bauer method. The data were analysed using Stata version 15 software. RESULTS: Approximately half of the patients (52.9%, 199/376) presented with infected wounds. Majority of the swabs (84.4%, 168/199) were culture positive, and yielded a total of 768 isolates where about half (52.9%, 406/768) were gram positive bacteria, and about two-thirds (64.6%, 496/768) were recovered from category II wounds. Among the gram positive bacteria, 339 (83.5%) were aerobes where Staphylococcus aureus (103, 30.4%), Coagulase-negative staphylococci (68, 20.1%), and Corynebacterium spp (33, 9.7%) had the highest prevalence. For the 362 Gram negative isolates, 217 (59.9%) were aerobes and the commonest isolates were P. maltocida (64, 29.5%), Capnocytophaga canimorsus (36, 16.6%) and P. canis (26, 12.0%). Gram-positive isolates were resistant to metronidazole (93.6%), oxacillin (68.5%), ceftriaxone (14.6%) and amoxicillin/clavulanic acid (14.0%). Gram negative isolates were resistant to metronidazole (100%), ampicillin (30.7%), oxacillin (29.3%), and doxycycline (22.9%). Multidrug resistance was in 105 (29.0%) and 121/406 (29.8%) of the gram-negative and gram-positive isolates, respectively. All gram-positive isolates were susceptible to vancomycin and ciprofloxacin. CONCLUSIONS: Infection rates of DBWs in Uganda are high and the dominant bacterial isolates are Staphylococcus aureus, Pasteurella spps, and Capnocytophaga canimorsus. Multidrug resistance to commonly used antibiotics is high. The recommendation in the Uganda Clinical Guidelines to use metronidazole in the management of DBWs should be reviewed. DBWs should be enlisted for routine antimicrobial resistance surveillance and rational use of antimicrobial agents should be promoted. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13756-022-01181-0

    Comparative evaluation of three PCR base diagnostic assays for the detection of pathogenic trypanosomes in cattle blood

    Get PDF
    Currently, several PCR based diagnostic assays have been developed to improve the detection of pathogenic trypanosomes. These tests include use of species specific primers, single and nested PCRs' based on primers amplifying the Internal Transcribed Spacer (ITS) regions of ribosomal DNA. This study compares three PCR based diagnostic assays and assesses the agreement of these three asaays by screening 103 cattle blood samples randomly collected from trypanosome endemic areas in western Kenya. The nested ITS based PCR, the single ITS based PCR and the species specific based PCR detected 28.1%, 26.2% and 10.7% of the samples respectively as positive for trypanosome infection. Nested ITS and single ITS PCRs' picked 3.8% and 1.9% as mixed infections respectively. Cohen kappa statistic used to compare agreements beyond chance between the assays showed highest degree of agreement (0.6) between the two ITS based tests, and the lowest (0.2) between the nested PCR test and the species specific PCR. The single ITS and nested ITS based diagnostic assays detected higher numbers of positive cases, and reduced the number of PCR reactions per sample to one and two respectively, compared to the five PCR reactions carried out using the species specific primers. This significantly reduced the labour, time and the cost of carrying out PCR tests, indicating the superiority of the ITS multi-species detection techniques. Reliable epidemiological studies are a prerequisite to designing effective tsetse and trypanosomiasis control programs. The present study established the suitability of using ITS based PCR assays for large-scale epidemiological studies

    Spatial distribution of African Animal Trypanosomiasis in Suba and Teso districts in Western Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies on the epidemiology of African Animal Trypanosomiasis (AAT) rarely consider the spatial dimension of disease prevalence. This problem is confounded by use of parasitological diagnostic methods of low sensitivity in field surveys. Here we report a study combining highly sensitive and species specific molecular diagnostic methods, and Geographical information system (GIS) for spatial analysis of trypanosome infection patterns, to better understand its epidemiology. Blood samples from 44 and 59 animals randomly selected from Teso and Suba districts respectively were screened for trypanosomes using PCR diagnostic assays. Spatial distribution of the positive cases was mapped and average nearest neighbour analysis used to determine the spatial pattern of trypanosome cases detected.</p> <p>Findings</p> <p>Trypanosome prevalence of 41% and 29% in Suba and Teso districts respectively was observed. <it>T. vivax </it>infections were most prevalent in both areas. Higher proportions of <it>T. brucei </it>infections (12%) were observed in Suba, a known sleeping sickness foci compared with 2% in Teso. Average nearest neighbour analysis showed the pattern of trypanosome infections as random. An overlay with tsetse maps showed cases lying outside the tsetse infested areas, mostly being cases of <it>T. vivax </it>which is known to be transmitted both biologically by tsetse and mechanically by biting flies.</p> <p>Conclusion</p> <p>These findings suggest a need to design control strategies that target not just the biological vector tsetse, but also the parasite in cattle in order to clear the possibly mechanically transmitted <it>T. vivax </it>infections. There is need to also review the accuracy of available tsetse maps.</p

    Perspective using cross-species vaccination approaches to counter emerging infectious diseases

    Get PDF
    Since the initial use of vaccination in the eighteenth century, our understanding of human and animal immunology has greatly advanced and a wide range of vaccine technologies and delivery systems have been developed. The COVID-19 pandemic response leveraged these innovations to enable rapid development of candidate vaccines within weeks of the viral genetic sequence being made available. The development of vaccines to tackle emerging infectious diseases is a priority for the World Health Organization and other global entities. More than 70% of emerging infectious diseases are acquired from animals, with some causing illness and death in both humans and the respective animal host. Yet the study of critical host–pathogen interactions and the underlying immune mechanisms to inform the development of vaccines for their control is traditionally done in medical and veterinary immunology ‘silos’. In this Perspective, we highlight a ‘One Health vaccinology’ approach and discuss some key areas of synergy in human and veterinary vaccinology that could be exploited to accelerate the development of effective vaccines against these shared health threats

    The evolution of Kenya’s animal health surveillance system and its potential for efficient detection of zoonoses

    Get PDF
    Introduction: Animal health surveillance systems in Kenya have undergone significant changes and faced various challenges throughout the years.Methods: In this article, we present a comprehensive overview of the Kenya animal health surveillance system (1944 to 2024), based on a review of archived documents, a scoping literature review, and an examination of past surveillance assessments and evaluation reports.Results: The review of archived documents revealed key historical events that have shaped the surveillance system. These include the establishment of the Directorate of Veterinary Services in 1895, advancements in livestock farming, the implementation of mandatory disease control interventions in 1944, the growth of veterinary services from a section to a ministry in 1954, the disruption caused by the Mau Mau insurrection from 1952 to 1954, which led to the temporary halt of agriculture in certain regions until 1955, the transition of veterinary clinical services from public to private, and the progressive privatization plan for veterinary services starting in 1976. Additionally, we highlight the development of electronic surveillance from 2003 to 2024. The scoping literature review, assessments and evaluation reports uncovered several strengths and weaknesses of the surveillance system. Among the strengths are a robust legislative framework, the adoption of technology in surveillance practices, the existence of a formal intersectoral coordination platform, the implementation of syndromic, sentinel, and community-based surveillance methods, and the presence of a feedback mechanism. On the other hand, the system’s weaknesses include the inadequate implementation of strategies and enforcement of laws, the lack of standard case definitions for priority diseases, underutilization of laboratory services, the absence of formal mechanisms for data sharing across sectors, insufficient resources for surveillance and response, limited integration of surveillance and laboratory systems, inadequate involvement of private actors and communities in disease surveillance, and the absence of a direct supervisory role between the national and county veterinary services.Discussion and recommendations: To establish an effective early warning system, we propose the integration of surveillance systems and the establishment of formal data sharing mechanisms. Furthermore, we recommend enhancing technological advancements and adopting artificial intelligence in surveillance practices, as well as implementing risk-based surveillance to optimize the allocation of surveillance resources

    A social justice perspective on access to human rabies vaccines

    Get PDF
    Rabies kills tens of thousands of people every year despite being entirely vaccine preventable. Key global health actors have launched a country-driven plan to achieve zero human deaths from dog-mediated rabies by 2030 worldwide. This partnership has recently been strengthened by Gavi, the Vaccine Alliance’s decision to invest in human rabies vaccines for post-exposure prophylaxis (PEP). While nation states are key to rabies elimination, the importance of Gavi's role cannot be understated. Unlike any other actor, Gavi can directly address an otherwise intractable market failure in the inadequate supply of rabies PEP. In this commentary, we employ the Capabilities Approach to identify the barriers to PEP access that lead to this market failure and, as a result, unnecessary deaths and suffering. We show the role that Gavi can play in reducing exposure of PEP supply to market forces as a matter of social justice, and hence redress the inequity underlying human rabies deaths
    corecore