156 research outputs found

    Modeling Growth Stocks via Size Distribution

    Get PDF
    The inability to predict the earnings of growth stocks, such as biotechnology and internet stocks, leads to the high volatility of share prices and difficulty in applying the traditional valuation methods. This paper attempts to demonstrate that the high volatility of share prices can nevertheless be used in building a model that leads to a particular size distribution, which can then be applied to price a growth stock relative to its peers. The model focuses on both transient and steady state behavior of the market capitalization of the stock, which in turn is modeled as a birth-death process. In addition, the model gives an explanation to an empirical observation that the market capitalization of internet stocks tends to be a power function of their relative ranks.

    Optimal Shrinkage Estimation of Mean Parameters in Family of Distributions With Quadratic Variance

    Get PDF
    This paper discusses the simultaneous inference of mean parameters in a family of distributions with quadratic variance function. We first introduce a class of semiparametric/parametric shrinkage estimators and establish their asymptotic optimality properties. Two specific cases, the location-scale family and the natural exponential family with quadratic variance function, are then studied in detail. We conduct a comprehensive simulation study to compare the performance of the proposed methods with existing shrinkage estimators. We also apply the method to real data and obtain encouraging results

    Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes

    Full text link
    Parameter estimation for nonlinear dynamic system models, represented by ordinary differential equations (ODEs), using noisy and sparse data is a vital task in many fields. We propose a fast and accurate method, MAGI (MAnifold-constrained Gaussian process Inference), for this task. MAGI uses a Gaussian process model over time-series data, explicitly conditioned on the manifold constraint that derivatives of the Gaussian process must satisfy the ODE system. By doing so, we completely bypass the need for numerical integration and achieve substantial savings in computational time. MAGI is also suitable for inference with unobserved system components, which often occur in real experiments. MAGI is distinct from existing approaches as we provide a principled statistical construction under a Bayesian framework, which incorporates the ODE system through the manifold constraint. We demonstrate the accuracy and speed of MAGI using realistic examples based on physical experiments

    Improving the uniformity of top emitting organic light emitting diodes using a hybrid electrode structure

    Get PDF
    Funding: The authors are grateful to the Engineering and Physical Sciences Research Council (grant EP/R035164/1) for financial support.Some applications of organic light-emitting diodes (OLEDs) require large area, high light output, and high uniformity. It is difficult to achieve these attributes simultaneously because of voltage drops in the contacts, which cannot easily satisfy high optical transparency and electrical conductivity simultaneously. In large area OLEDs, thin electrodes with high sheet resistance induce voltage drops across the devices, leading to non-uniform distribution of light. However, thick electrodes with low sheet resistance decrease the light output due to low transmittance. To overcome this trade-off, a multilayer hybrid electrode based on Ag (20 nm)/WO3/Ag (20 nm)/WO3 is designed to obtain high electrical conductance with low optical loss. Compared to conventional devices using a single Ag (40 nm) top electrode, there is a considerable increase in the external quantum efficiency (EQE) of the device using this electrode (from 11.5% to 25.5% at 1000 cd m−2), while maintaining similar sheet resistance. In addition, a large area (≈57 cm2) OLED with the hybrid electrode demonstrates a luminance uniformity of 77% as compared to a device using single silver electrode with uniformity of 66%. Therefore, the proposed Ag/WO3/Ag/WO3 hybrid electrode is a promising choice for the fabrication of efficient and uniform large-area OLEDs.Publisher PDFPeer reviewe

    Electrically driven organic laser using integrated OLED pumping

    Get PDF
    Funding: Authors thank the Engineering and Physical Sciences Research Council of the UK for the financial support from grants EP/R035164/1, EP/R03480X/1 and EP/L017008/1. J.G. thanks the China Scholarship Council (grant no. 201806100005) for financial support.Organic semiconductors are carbon-based materials that combine optoelectronic properties with simple fabrication and the scope for tuning by changing their chemical structure1,2,3. They have been successfully used to make organic light-emitting diodes2,4,5 (OLEDs, now widely found in mobile phone displays and televisions), solar cells1, transistors6 and sensors7. However, making electrically driven organic semiconductor lasers is very challenging8,9. It is difficult because organic semiconductors typically support only low current densities, suffer substantial absorption from injected charges and triplets, and have additional losses due to contacts10,11. In short, injecting charges into the gain medium leads to intolerable losses. Here we take an alternative approach in which charge injection and lasing are spatially separated, thereby greatly reducing losses. We achieve this by developing an integrated device structure that efficiently couples an OLED, with exceptionally high internal-light generation, with a polymer distributed feedback laser. Under the electrical driving of the integrated structure, we observe a threshold in light output versus drive current, with a narrow emission spectrum and the formation of a beam above the threshold. These observations confirm lasing. Our results provide an organic electronic device that has not been previously demonstrated, and show that indirect electrical pumping by an OLED is a very effective way of realizing an electrically driven organic semiconductor laser. This provides an approach to visible lasers that could see applications in spectroscopy, metrology and sensing.Publisher PDFPeer reviewe

    High-Bandwidth Organic Light Emitting Diodes for Ultra-Low Cost Visible Light Communication Links

    Get PDF
    Visible light communications (VLC) have attracted considerable interest in recent years due to an increasing need for data communication links in home and enterprise environments. Organic light-emitting diodes (OLEDs) are widely used in display applications owing to their high brightness, high quality colour-rending capability and low cost. As a result, they are attractive candidates for the implementation of ultra-low cost visible light optical links in free-space and guided-wave communications. However, OLEDs need to exhibit a bandwidth of at least ~MHz to be able to support the modest data rates (~Mbps) required in these applications. Although fluorescent OLEDs typically exhibit shorter photon lifetimes than inorganic LEDs, the bandwidth performance of the large size OLEDs used in display applications are limited by their electrical characteristics. In this work, we present a detailed physical simulation that describes well the performance of fast OLED devices that exhibit significant -3 dB bandwidths (f-3dB) of 44 MHz obtained for a 0.12 mm2 device. It is demonstrated that the reduction of the device size results in a significant bandwidth improvement due primarily to a reduction in parasitic capacitance of the devices, though this is counteracted by carrier dynamic effects. The model provides an insight into the basic physical properties of the OLED and may be used for optimisation of future generations of OLED devices.EPSRC EP/K00042X/1 EPSRC Studentship 146672

    245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link

    Get PDF
    Funding: UK EPSRC (EP/K00042X/I, EP/R005281/1, EP/R007101/1 and EP/R035164/1); Marie Skłodowska Curie Individual Fellowship (703387).Organic optoelectronic devices combine high-performance, simple fabrication and distinctive form factors. They are widely integrated in smart devices and wearables as flexible, high pixel density organic light emitting diode (OLED) displays, and may be scaled to large area by roll-to-roll printing for lightweight solar power systems. Exceptionally thin and flexible organic devices may enable future integrated bioelectronics and security features. However, as a result of their low charge mobility, these are generally thought to be slow devices with microsecond response times, thereby limiting their full scope of potential applications. By investigating the factors limiting their bandwidth and overcoming them, we demonstrate here exceptionally fast OLEDs with bandwidths in the hundreds of MHz range. This opens up a wide range of potential applications in spectroscopy, communications, sensing and optical ranging. As an illustration of this, we have demonstrated visible light communication using OLEDs with data rates exceeding 1 gigabit per second.Publisher PDFPeer reviewe

    Highly efficient green and red narrowband emissive organic light-emitting diodes employing multi-resonant thermally activated delayed fluorescence emitters

    Get PDF
    Funding: S. W. thanks the China Scholarship Council (201906250199). A. K. G. is grateful to the Royal Society for Newton International Fellowship NF171163. EZ-C and IDWS acknowledge support from EPSRC (EP/L017008, EP/P010482/1). We are also grateful for financial support from the University of St Andrews Restarting Research Funding Scheme (SARRF) which is funded through the Scottish Funding Council grant reference SFC/AN/08/020. EZ-C is a Royal Society Leverhulme Trust Senior Research fellow (SRF\R1\201089). We would also like to thank the Leverhulme Trust (RPG-2016-047) for financial support.Herein, we demonstrate how judicious selection of donor decorating a central multi-resonant thermally activated delayed fluorescence (MR-TADF) core based on DiKTa can lead to very high-performance OLEDs. Decorating the DiKTa core with triphenylamine (TPA) and diphenylamine (DPA), 3TPA-DiKTa and 3DPA-DiKTa exhibit bright, narrowband green and red emission in doped films, respectively. The OLEDs based on these emitters showed record-high performance with maximum external quantum efficiencies (EQEmax) for this family of emitters, with a EQEmax of 30.8% for 3TPA-DiKTa at λEL of 551 nm and 16.7% for 3DPA-DiKTa at λEL of 613 nm. The efficiency roll-off in the OLEDs was improved significantly by using 4CzIPN as an assistant dopant in hyperfluorescence (HF) devices. The outstanding device performance has been attributed to preferential horizontal orientation of the transition dipole moments of 3TPA-DiKTa and 3DPA-DiKTa.Publisher PDFPeer reviewe
    • …
    corecore