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This version November 2001

Abstract

The inability to predict the earnings of growth stocks, such as biotechnology and internet
stocks, leads to the high volatility of share prices and di±culty in applying the traditional
valuation methods. This paper attempts to demonstrate that the high volatility of share
prices can nevertheless be used in building a model that leads to a particular size distribu-
tion, which can then be applied to price a growth stock relative to its peers. The model
focuses on both transient and steady state behavior of the market capitalization of the
stock, which in turn is modeled as a birth-death process. In addition, the model gives an
explanation to an empirical observation that the market capitalization of internet stocks
tends to be a power function of their relative ranks.

Issuing stocks is arguably the most important way for growth companies to ¯nance their

projects, and in turn helps transfer new ideas into products and services for society. Although

the components of growth stocks may change over time (perhaps consisting of railroad and

utility stocks in the early 1900's, and biotechnology and internet stocks in 2001), studying the

general properties of growth stocks is essential to understand ¯nancial markets and economic

growth.

However, uncertainty is manifest for growth stocks. For example, (a) growth stocks tend

to have low or even negative earnings; (b) the volatility of growth stocks is high (both their

daily appreciation and depreciation rates are high); (c) it is di±cult to predict the upward and

downward trends. Consequently, it poses a great challenge to derive a meaningful mathematical

model within the classical valuation framework, such as the net present value method.

Since it appears that as far as growth stocks are concerned, we are only sure about their

uncertainty, one may wonder whether there is much more to say about them. The current

paper attempts to illustrate that a mathematical model for growth stocks can, nevertheless, be

built, mainly by utilizing the high volatility of their share prices.

One motivation of the current study comes from a report on internet stocks in the Wall

Street Journal1 (Dec 27, 1999): People2 at Credit Suisse First Boston observed that \there

is literally a mathematical relationship between the ranking of the (internet) stock and its

capitalization". More precisely, it is suggested the emergence of an almost linear downward

1We are grateful to Professor Morris Cohen at the Wharton School, University of Pennsylvania, to point out
the article in the Wall Street Journal during a talk.

2This observation is summarized later in a research report by Mauboussin and Schay (2000).
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pattern when the market capitalizations of internet stocks are plotted against their associated

ranks on a log-log scale, with rank one being the largest market capitalization. Even more

interestingly, the same article also reported that this phenomenon does not seem to hold for

non-growth stocks3. The report challenges people to investigate whether such a phenomenon

happens simply by chance or if there is a certain mechanism behind it.

The model proposed in the current paper provides an explanation of this phenomenon.

Roughly speaking, the result suggests that if the market capitalization of the stocks is modeled

as a birth-death process, then for the stocks with high volatility (such as biotechnology and

internet stocks) an almost linear curve appears, on the log-log scale, for the size distribution4

of the market capitalization. Meanwhile for non-growth stocks the model implies that such a

phenomenon should not be expected, primarily because of the slow convergence of the birth-

death process to its steady state distribution due to a low volatility. Furthermore, the model

also suggests a way to price growth stocks (not just internet stocks) relatively to their peers.

Studying size distributions in various social problems has a long history, dating back at least

to Pareto (1896), Yule (1924, 1944), Gibrat (1931), and Zipf (1949). In the 1950s, economists

began to use various processes, including birth-death processes, to model size distributions

in economics, including the sizes of business ¯rms (see, for example, Simon, 1955, Ijiri and

Simon, 1977, Lucas, 1978, Steindl, 1965, 1968, Simon and Bonini, 1958, Axtell, 2001), income

distribution (see, for example, Rutherford, 1955, Mandelbrot, 1960, Shorrocks, 1975, Feenberg

and Poterba, 1993), and city size distribution (see, for example, Glaeser, Scheinkman, and

Shleifer, 1995, Krugman, 1996a, 1996b, Gabaix, 1999). However, most of the theory developed

so far focuses on the steady-state size distribution and pays no special attention to the transient

behavior of size distribution.

The contribution of the current paper is two fold.

(1) From a theoretical point of view, we give a detailed analysis (see Section III) of the

transient behavior of size distribution, which is not well addressed in the size distribution

literature. The analysis of the transient behavior is crucial to our analysis (see Section IV)

as it explains why the size distribution theory can be applied to growth stocks but not to

non-growth stocks.

3Based on the data of a single day, Mauboussin and Schay (2000) later also stated that saving and loan stocks
may show a \strong power law characteristics" as well. However, our analysis in Section VI, based on the data
of three years (from 1998 to 2000), does not seem to con¯rm any consistent patterns of the power law for saving
and loan stocks.

4The size distribution is the distribution of some values of interest in terms of their relative ranks within a
group.
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(2) From an applied point of view, we point out that the theory of size distribution may

have an interesting application in pricing growth stocks (see Section V), which is di±cult for

traditional methods, such as the net present value approach.

The current study also di®ers from the literature of using birth-death processes to model

city size distribution in two aspects. First, in the city size distribution the exponent of the

power law (i.e. the slope of regressing log city size on log city rank) is very close to ¡1 (see, for
example, Krugman, 1996b, Gabaix, 1999). But here, the exponent (i.e. the slope of regressing

log-market-capitalization on log-rank5) seems to be much smaller than ¡1, as will be seen in
Section VI. Secondly, as pointed out in Gabaix (1999) and Krugman (1996a, pp. 96-97), it

could take a birth-death process too much time to converge to the steady state distribution

(which is the power law), if the volatility of city growth rates is not large; this, consequently,

posts a serious problem for using birth-death processes to model city size distribution. However,

in our case the volatility of growth stocks tends to be much higher than that of non-growth

stocks, and that of city growth rates. Therefore, the growth stocks tend to converge to the

steady state much faster, resulting in a clear linear pattern of the size distribution (as shown

in Section VI). This also underlines the importance of studying the transient behavior of size

distribution.

The paper is organized as follows. Section I proposes the basic model, while Sections II

and III analyze both the transient and steady state properties of the model. The model is then

applied in Section IV to derive the size distribution of growth stocks, and to explain why the

method can be used for growth stocks but not for non-growth stocks. Implication for relative

pricing of growth stocks is provided in Section V. Numerical illustrations are presented in

Section VI. The advantage and disadvantage of the model are discussed in the last section. All

the proofs are deferred to the appendices.

I The Model

Consider at time t a growth stock with total market capitalization X(t), taking values in non-

negative integers X(t) = i, i = 0; 1; 2; : : : (the market capitalization is de¯ned as the product

of the total outstanding shares and the market price of the stock). The unit of X(t) could be,

for example, millions or billions of dollars.

5In the city size distribution literature, people typically regress log rank on log city size, namely treating log
rank as the regressor. Here we treat log rank as the regressee, i.e. regress log market capitalization on log rank,
because the market capitalizations are of more interest than the ranks.
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Model. The market capitalization X(t) of the growth stock follows a birth-death process:

given X(t) being in state i, the instantaneous changes are as follows:

i! i+ 1; with rate i¸+ g; i ¸ 0;

i! i¡ 1; with rate i¹+ h; i ¸ 1;

where the parameters

¸; ¹ > 0; g > 0; h ¸ 0; ¸ < ¹:

In other words, X(t) follows a birth-death process with the in¯nitesimal generator given by the

in¯nite matrix 0BBBB@
¡g g 0 0 ¢ ¢ ¢
¹+ h ¡¸¡ ¹¡ g ¸+ g 0 ¢ ¢ ¢
0 2¹+ h ¡2¸¡ 2¹¡ g 2¸+ g ¢ ¢ ¢
...

...
. . .

. . .
. . .

1CCCCA :
In the standard notation, X(t) is a birth-death process6 with the birth rate ¸i and the death

rate ¹i satisfying

¸i = i¸+ g; ¹i = i¹+ h; i ¸ 1; ¸0 = g; ¹0 = 0: (1)

The two parameters ¸ and ¹ represent the instantaneous appreciation and depreciation

rates of X(t) due to market °uctuation; the model assumes that they in°uence the market

capitalization proportionally to the current value. The requirement ¸ < ¹ is postulated here to

ensure that the birth-death process has a steady state distribution. The existence of a steady

state distribution is necessary for the discussion of the size distribution, and is a standard

assumption in the literature; see, for example, the book by Ijiri and Simon (1977).

In general, because of the di±culty of predicting the instantaneous upward and downward

price movements, for both growth stocks and non-growth stocks ¸ and ¹ must be quite close,

¸=¹ ¼ 1. In addition, for growth stocks, both ¸ and ¹ must be large, due to the high volatility.
These observations will become assumptions (A3) and (A4) in Section IV.B.

The parameter g > 0 models the rate of increase inX(t) due to non-market factors,7 such as,

the e®ect of additional shares being issued through public o®erings, or the e®ect of warranties

on the stock being exercised (resulting in new shares being issued). For growth stocks, g is at

least as large as that for non-growth stocks. The parameter h attempts to capture the rate of

6The state 0 only means that the size is below a certain minimal level. It does not imply, for example, the
company goes bankrupt.

7The model is not very interesting if g = 0, as the steady state distribution degenerates to a single point mass
at zero.
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decrease in X(t) due to non-market factors, such as the e®ect of dividend payments. For most

growth stocks h ¼ 0, as no dividends are paid.
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Figure 1: Two sample paths of the birth-death process. In the upper panel X(0) = 100,
¸ = 2:49, ¹ = 2:51, g = 1, h = 0; in the lower panel, X(0) = 100, ¸ = 24:9, ¹ = 25:1, g = 10,
h = 0.

Figure 1 provides an illustration of the model by showing the sample paths of two realizations

of the birth-death process (1) for about 6.5 years. In the upper panel, the instantaneous jump

rates, ¸ and ¹, are small, while in the lower panel ¸ and ¹ are large. The sample paths suggest

two points: (1) for reasonably large ¸ and ¹, the jumps of the birth-death processes is almost

unnoticeable, and the overall sample paths ¯t in well with our intuition of market °uctuation;

(2) although ¸ < ¹, the sample paths may still have some strong upside movements if ¸ is

close to ¹; for example, in the lower panel, the market capitalization increases from about 20

to about 250 (more than 12 times) within a short period (about 2.5 years).

The model proposed here is a variation and a generalization of the models proposed in

Simon (1955) and Shorrocks (1975) to study business and income sizes, etc. The key di®erence

here is that we provide a detailed analysis of both transient and steady states, not just the

steady state analysis. The transient analysis not only presents some mathematical challenges

(see Section III), but also is essential to understand why the theory of size distributions is useful
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for growth stocks but not for non-growth stocks (see Section IV).

II General Properties of the Model

II.A Properties of the Steady State Distribution

The steady state measure is given by

¼0 = 1; ¼n :=
¸0¸1 ¢ ¢ ¢¸n¡1
¹1 ¢ ¢ ¢¹n ; n = 1; 2; ::::

Normalizing f¼ng provides the steady state distribution of the birth-death process:

lim
t!1P (X(t) = n) = ¼n=S; S :=

1X
n=0

¼n;

(see Proposition 1 below for the ¯niteness of S under the setting of (1)). In our case,

¼n =

µ
¸

¹

¶n (g=¸)(1 + g=¸)(2 + g=¸) ¢ ¢ ¢ ((n¡ 1) + g=¸)
(1 + h=¹)(2 + h=¹) ¢ ¢ ¢ (n+ h=¹) ; n ¸ 1:

Using the gamma function, it can be succinctly expressed as

¼n =
¡(1 + h=¹)

¡(g=¸)

µ
¸

¹

¶n ¡(n+ g=¸)

¡(n+ 1 + h=¹)
; n ¸ 0: (2)

Proposition 1. (Steady-State Properties).

(1) The birth-death process (1) is positive recurrent; i.e. it will visit every state f0; 1; 2; : : :g
with probability one, and the expected visiting time of any state is ¯nite.

(2) As n!1,
¼n »= ¡(1 + h=¹)

¡(g=¸)

µ
¸

¹

¶n
ng=¸¡h=¹¡1; (3)

where throughout this paper, a »= b means lima=b = 1. This asymptotic order, in particular,

implies that S =
P1
n=0 ¼n is ¯nite.

(3) The moment generating function of the steady state distribution is given by

M(µ) :=
1X
n=0

eµn¼n=S = F (
g

¸
; 1; 1 +

h

¹
;
¸

¹
eµ)=F (

g

¸
; 1; 1 +

h

¹
;
¸

¹
); (4)

where F (a; b; c; z) is the hypergeometric function (see page 556 of Abramowitz and Stegun,

1972):

F (a; b; c; z) :=
¡(c)

¡(a)¡(b)

1X
n=0

¡(a+ n)¡(b+ n)

¡(c+ n)

zn

n!
:
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In particular, the mean and the second moment of the steady state distribution are

m1 := M 0(0) =
1

S

g

¹+ h
F (1 +

g

¸
; 2; 2 +

h

¹
;
¸

¹
)

m2 := M 00(0) =
1

S

g

¹+ h

½
F (1 +

g

¸
; 2; 2 +

h

¹
;
¸

¹
) + 2

¸+ g

2¹+ h
F (2 +

g

¸
; 3; 3 +

h

¹
;
¸

¹
)

¾
:

(4) Let the tail probability of the steady state distribution be

F (n) := lim
t!1P (X(t) ¸ n) =

1X
k=n

¼k=S:

Then, as n!1,

F (n) »= 1

S

¡(1 + h=¹)

¡(g=¸)

µ
1¡ ¸

¹

¶¡1µ¸
¹

¶n
ng=¸¡h=¹¡1: (5)

Proof. See Appendix A. 2

Note that, instead of the original parameters, only the three ratios, ¸=¹; h=¹, and g=¸,

determine the steady state distribution. Thus the steady state properties only re°ect the

relative magnitude of the parameters ¸, ¹, g and h, rather than the absolute magnitude. (This

contrasts with the realizations of the birth-death process, such as Figure 1, in which the dynamic

behavior of sample path does depend on the absolute magnitude of ¸, ¹, g and h.)

II.B Transient Mean and Variance

Proposition 1 only provides the steady state properties of the market capitalization in our

model. However, these properties are only relevant if the convergence from the transient states

to the steady states is fast enough, i.e. if the convergence can be observed in a timely fashion8.

This is a point stressed in Gabaix (1999) and Krugman (1996a, pp. 96-97).

There are several ways to judge the convergence speed. In this subsection we shall focus

on the mean and variance of the transient distribution, which can lead to a measure of the

convergence rate; see Section IV.A. A more accurate measure (which is of course more di±cult

to study) is the convergence rate for the transition probabilities, which attempts to capture the

convergence rate for the whole distribution rather than just the ¯rst two moments; this will be

analyzed in the next section.

8Another possibility is that a birth-death process has been run for a long time; i.e. the stock has been traded
in market for a long period. However, the parameters, ¸, ¹, g and h may have changed during the period, thus
altering the steady state distribution.
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Denote the transition probability at time t to be pi;j(t) := P (X(t) = jjX(0) = i); the

transient expectation at time t to be m1(t) := EX(t) =
P1
j=0 jpi;j(t); and the second moment

to be m2(t) := EX
2(t) =

P1
j=0 j

2pi;j(t):

Proposition 2. (Transient Mean and Variance) Suppose the birth-death process starts from

X(0) = i. The ¯rst moment m1(t) at time t satis¯es the following di®erential equation:

m01(t) = (¸¡ ¹)m1(t) + g + h(1¡ pi;0(t)); (6)

whose solution is given by

m1(t) = ie
(¸¡¹)t +

g

¹¡ ¸ [1¡ e
(¸¡¹)t] + h

Z t

0
e(¹¡¸)(s¡t)(1¡ pi;0(s))ds:

The second moment m2(t) satis¯es

m02(t) = 2(¸¡ ¹)m2(t) + (¸+ ¹+ 2g ¡ 2h)m1(t) + g + h(1¡ pi;0(t)); (7)

with the solution given by

m2(t) = i2e2(¸¡¹)t +
g

2(¹¡ ¸) [1¡ e
2(¸¡¹)t] + h

Z t

0
e2(¹¡¸)(s¡t)(1¡ pi;0(s))ds+

+(¸+ ¹+ 2g ¡ 2h)
Z t

0
e2(¹¡¸)(s¡t)m1(s)ds:

Proof. See Appendix9 A. 2

9The di®erential equations (6) and (7) also provide another way to calculate the mean and variance of the
steady state distribution. Letting t ! 1 in (6) and (7), and using the fact that limt!1 pi;0(t) = ¼0=S = 1=S,
we know that the mean and second moment of the steady state distribution satisfy

0 = (¸¡ ¹)m1 + g + h(1¡ 1=S);
0 = 2(¸¡ ¹)m2 + (¸+ ¹+ 2g ¡ 2h)m1 + g + h(1¡ 1=S);

which gives the mean, the second moment, and variance of the steady state distribution as

m1 =
g

¹¡ ¸ +
h

¹¡ ¸ (1¡
1

S
); m2 =

¹+ g ¡ h
(¹¡ ¸)2 [g + h(1¡

1

S
)];

var = m2 ¡m2
1 =

1

(¹¡ ¸)2 [g + h(1¡
1

S
)][¹¡ h(2¡ 1

S
)]:
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III The Transient Behavior of the Model

We shall see in the next section that the model implies that in the steady state the size distribu-

tion of the birth-death process follows an almost linear curve (on a log-log scale), as empirically

observed. A natural question is then: why this phenomenon is observed for growth stocks,

but not for non-growth stocks. Basically, the answer hinges on the fact that due to the high

volatility of the growth stocks (in our model meaning that ¸ and ¹ are big) the birth-death

process converges very fast to the steady state distribution, whereas for the non-growth stocks

the convergence is so slow (because that ¸ and ¹ are not big) that essentially the steady state

size distribution cannot be observed in practice.

This section provides necessary results of the transient behavior of the model, especially

the convergence speed to the steady state distribution, to be used in the next section. As we

mentioned, most of the literature on the size distribution focuses on the steady state properties,

and, except for some numerical results (see for example Shorrocks10, 1975), the theoretical

properties of the transient behavior are hardly addressed in the literature. In this sense, this

section constitutes the main technical contribution of the current paper to the size distribution

literature.

The speed of convergence of a birth death process can be measured by the decay parameter

(see Kijima, 1997), which is de¯ned by

° := supf® ¸ 0 : pi;j(t)¡ (¼j=S) = O(e¡®t) for all i; j ¸ 1g;

where recall pi;j(t) is the transition probability at time t and ¼j=S is the steady state probability.

Notice that the decay parameter ° a®ects the convergence in an exponential way. In other

words, a small di®erence in ° can have a remarkable e®ect on the speed of convergence, which

in turn suggests that the steady state analysis of the size distribution in our model based on

the birth-death process is only relevant when the decay parameter is large.

Theorem 1. (The Decay Parameter) For the birth-death process in the model, if h = 0

then the decay parameter

° = ¹¡ ¸;
10Shorrocks (1975) showed, through numerical calculation, that if the convergence rate is not large enough, it

may take 15 to 181 years for some birth-death processes to reach the steady state.
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otherwise, if h > 0 then

¹¡ ¸ · ° < ¹¡ ¸+ h[1¡min(¸
¹
;
¸+ g

¹+ h
)]:

The derivation of this theorem is the main technical contribution of the current paper to

the study of size distribution, and is deferred to Appendix B.

IV The Size Distribution for the Growth Stocks

In this section we shall apply the results obtained in the last two sections, of both steady state

and the transient behavior of the model, to study the size distribution of growth stocks. Since

for most growth stocks, there is no dividend payment, we shall assume from this section on that

h = 0: (8)

IV.A Basic Transient and Steady State Properties for h = 0

Under the assumption (8), Proposition 1 implies that the steady state measure becomes

¼n =
1

¡(g=¸)

µ
¸

¹

¶n ¡(n+ g=¸)
n!

; n ¸ 0;

with

F (n) =
1X
k=n

¼k=S = ¼nF (n+ g=¸; 1;n+ 1;¸=¹)=S; n ¸ 0:

In addition, S =
P1
k=0 ¼k = F (g=¸; 1; 1;¸=¹) =

³
1¡ ¸

¹

´¡g=¸
, thanks to the following property

of hypergeometric function: F (a; b; b; z) = (1¡ z)¡a. This, together with (5), yields

F (n) = lim
t!1P (X(t) ¸ n)

»= 1

¡(g=¸)

µ
1¡ ¸

¹

¶g=¸¡1 µ¸
¹

¶n
ng=¸¡1: (9)

By (4), the moment generating function of the steady state distribution, under h = 0, is

M(µ) =

Ã
1¡ ¸

¹e
µ

1¡ ¸
¹

!¡g=¸
=

Ã
¹¡ ¸eµ
¹¡ ¸

!¡g=¸
:

Consequently, the mean and the second moment of the steady state distribution are

m1 =M
0(0) =

g

¹¡ ¸; m2 =M
00(0) =

g(¹+ g)

(¹¡ ¸)2 ;
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and the variance is given by

var = m2 ¡m21 =
¹g

(¹¡ ¸)2 :
For the properties of the transient behavior, ¯rst note that, by Theorem 1, the decay

parameter, which measures the speed of convergence to steady state in an exponential way, is

given by

° = ¹¡ ¸:
Secondly, by Proposition 2, the di®erential equations11 of the mean and second moment for the

transient states become

m01(t) = (¸¡ ¹)m1(t) + g; m1(0) = i;

m02(t) = 2(¸¡ ¹)m2(t) + (¸+ ¹+ 2g)m1(t) + g; m2(0) = i
2;

whose solutions are

m1(t) = ie(¸¡¹)t +
g

¹¡ ¸ [1¡ e
(¸¡¹)t];

m2(t) = i2e2(¸¡¹)t + i
¸+ ¹+ 2g

¸¡ ¹ (e2(¸¡¹)t ¡ e(¸¡¹)t) +

+
g

2(¹¡ ¸) [1¡ e
2(¸¡¹)t] +

g(¸+ ¹+ 2g)

2(¹¡ ¸)2 (1¡ e(¸¡¹)t)2:

The exponents in m1(t) and m2(t) are all related to (¸ ¡ ¹), which also points out, from a

di®erent viewpoint, that (¹¡ ¸) should a®ect the speed of convergence in an exponential way.
In addition, it is easily seen that

lim
t!1m1(t) =

g

¹¡ ¸ = m1; lim
t!1m2(t) =

g(¹+ g)

(¹¡ ¸)2 = m2:

IV.B The Size Distribution

ConsiderM (hereM is an unknown quantity) growth stocks governed by the same birth-death

process as indicated in the model, among which the K largest stocks (in terms of their market

capitalization) are included in a group to be studied. Suppose we rank the market capitalization

from 1 to K and denote the resulting ranked values as X(1), X(2), ..., X(K), with X(1) being

the largest, and X(2) the second largest etc. Then the empirical tail distribution ~F (x) (the

empirical version of F ) evaluated at X(i) is simply ~F (X(i)) = i=M , i = 1; :::;K. Now we make

two assumptions.

11Karlin and McGregor (1958) derived a di®erential equation for pi;j(t), in the case of h = 0, and solved it by
using orthogonal polynomials.
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(A1): The birth-death process has reached the steady state.

(A2): For each stock included in the group, the market capitalization is large; in other

words, even X(K) is large.

According to (9), in the steady state, for large capitalization n ,

logF (n) »= log
(

1

¡(g=¸)

µ
1¡ ¸

¹

¶g=¸¡1)
+ n log

µ
¸

¹

¶
¡ (1¡ g=¸) log(n):

Therefore, empirically with X(i) = n, we shall expect that

log ~F (X(i)) = log(i=M) ¼ logf
1

¡(g=¸)

µ
1¡ ¸

¹

¶g=¸¡1
g+X(i) log

µ
¸

¹

¶
¡ (1¡ g=¸) log(X(i)):

Rearranging the terms above yields

logX(i) ¼ C ¡
1

1¡ g=¸ log i+
1

1¡ g=¸X(i) log
µ
¸

¹

¶
; 1 · i · K; (10)

where the constant term

C =
1

1¡ g=¸ log
(

1

¡(g=¸)

µ
1¡ ¸

¹

¶g=¸¡1)
+
log(M)

1¡ g=¸: (11)

Since M is unknown, C is essentially a free parameter. Equation (10) has several immediate

implications, if we make two more assumptions.

(A3): For both growth and non-growth stocks, ¸=¹ ¼ 1:
(A4): For growth stocks, both ¸ and ¹must be large.

Assumption (A3) is postulated because generally it is hard to predict instantaneous upward

and downward price movements for both growth stocks and non-growth stocks; thus, ¸ and

¹ must be quite close. Assumption (A4) re°ects the high volatility12 of growth stocks. Note

that (A4) implies that the decay parameter ° = ¹ ¡ ¸ (which a®ects the convergence in an
exponential way) may also be large, thus leading to a fast convergence to the steady state

distribution and justifying (A1).

By (A3), ¸=¹ ¼ 1; so the last term in (10) must generally be small. Consequently, if one

plots the logarithm of the market caps against the logarithm of the ranks, of \large-cap" 13

growth stocks that satisfy Assumption (A2) above, (10) suggests that it should be almost linear.

This explains the ¯rst half of the empirical observation reported in the Wall Street Journal.

12Kerins, Smith, and Smith (2001) shows empirically that the volatility of internet stocks may be at least ¯ve
times that of traditional stocks.
13Here the word \large-cap" is used in a loose sense, and should not be confused with similar words used in

the exchanges. Here it means that the market capitalization is large enough so that the asymptotic result (9)
holds.
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In addition, the results imply that the same phenomenon of the size distribution should

hold not only for large-cap internet stocks but also for other large-cap growth stocks, such as

large-cap biotechnology stocks, with large ¸ and ¹, and ¸=¹ ¼ 1.

IV.C Why the Model Does Not Apply to Non-Growth Stocks

There are at least two reasons why the almost linear relationship between the logarithm of the

market capitalization and the logarithm of the ranks does not appear for non-growth stocks.

First, the birth-death process model may not be valid for non-growth stocks. Secondly, even

if the model is valid for non-growth stocks, in order to empirically observe such a linear phe-

nomenon as implied by (10), a few conditions must be satis¯ed, as (10) is based on the steady-

state distribution:

(C1): In terms of time, the convergence from the transient states to the steady state must

be fast enough. This in turn depends on the magnitude of the decay parameter °; in other

words, ° must be large.

(C2): In terms of market capitalization, X must be large enough, as required by the asymp-

totic results in (9) and (10).

(C3): To observe the almost linear relationship between the logarithm of the market capi-

talization and the logarithm of the ranks, ¸=¹ must be close to one in order to make the last

term in (10) disappear.

For the large-cap (thus satisfying the condition (C2) above) growth stocks, by assumptions

(A3) and (A4), both ¸ and ¹ are large, and ¸=¹ ¼ 1. If ¹¡¸ is large, then the decay parameter
° is also large, thus resulting in a fast convergence to the steady state.

For non-growth stocks, the volatility parameters, which in our model are ¸ and ¹, are

generally not large. As a consequence, the decay parameter ° = ¹ ¡ ¸ (which a®ects the
convergence in an exponential way) cannot be large in general. In other words, although in the

steady state plotting the logarithm of the market capitalization against the logarithm of the

relative ranks may display a linear relationship, the linear relationship may not emerge at all

within a reasonable amount of time, due to the slow convergence from the transient state to the

steady state. Furthermore, if the convergence rate is slow, many factors can lead the process

to depart from the original steady state, e.g. changing of ¸ and ¹, etc.
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V Relative Pricing of Growth Stocks

The model can be used to price large-cap growth stocks relatively within a peer group with

similar parameters ¸, ¹, and g (for example, it may not be sensible to group biotechnology

stocks with internet stocks as their parameters may be quite di®erent). In particular, (10)

provides a link between the market capitalization of the stocks and their relative ranks within

the group. However since it involves a nuisance parameter C, a better equation can be obtained

by eliminating C ¯rst, as is typical in many standard statistical procedures. To do this, observe

that when i = 1 we have

logX(1) ¼ C ¡
1

1¡ g=¸ log 1 +
1

1¡ g=¸X(1) log
µ
¸

¹

¶
: (12)

Taking the di®erence between (10) and (12) cancels out the nuisance constant C and gives

log
X(i)
X(1)

¼ ¡ 1

1¡ g=¸ log i+
1

1¡ g=¸
³
X(i) ¡X(1)

´
log

µ
¸

¹

¶
; 1 · i · K: (13)

As a key formula in this section, equation (13) provides a way to price growth stocks relative

to their peers. More speci¯cally, one can precede with the following two steps: (a) obtain the

parameters ¸=¹ and g=¸ by running a regression according to (13). This can be done, for

example, by choosing ¸=¹ and g=¸ to minimize the squared errors for log(X(i)=X(1)), subject

to the constraints that ¸=¹ < 1 and g=¸ > 0: (b) Once these parameters are obtained, the

theoretical market capitalization of the stock can be calculated according to equation (13),

with the input being its rank. This, in turn, leads to a theoretical value of the shares price,

after dividing the market capitalization by the total number of outstanding shares.

Since the last term in (13) is typically small (due to ¸=¹ ¼ 1), one can also use, as a quick
approximation, a simpli¯ed version of (13):

log
X(i)
X(1)

¼ ¡ 1

1¡ g=¸ log i; 1 · i · K; (14)

with the constraint g=¸ > 0.

Note that the model suggests that the exponent of the power distribution (i.e. the slope of

the regression line), ¡ 1
1¡g=¸ , is less than ¡1, which will be con¯rmed by the data in Section

VI. This is quite di®erent from the city size distribution, in which the exponent is very close

to ¡1; see Krugman (1996b), Gabaix (1999).
We want to point out that the total number of stocks, K, included in the peer group in (13)

or (14) should be as large as possible, as long as it satis¯es the requirements that, for example,
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the stocks within the peer group must have similar characteristics (so that they are governed by

the same parameters ¸, ¹, and g), and their market capitalizations should all be large enough

(so that assumption (A2) is satis¯ed). Big K helps in two ways: (a) it makes the estimation

of the parameters more accurate; (b) If K is small, then the result may be altered by omitting

some stocks with large capitalization; for example, if there are 10 growth stocks and the third

largest one is ignored in the regression, then the estimated parameters will be biased.

The regression using (13) or (14) is, however, robust against possible truncation errors,

thanks to the fact that the relative ranks are used . For example, if there are totally 200 growth

stocks and only the top 100 stocks with the large market capitalization are included in the

estimation, then (10) will not alter.

Another good property worthy of mentioning is that (14) is scale-invariant. Indeed, if the

unit of X(t) changes by a factor of A (i.e. the new unit becomes A times the original unit),

then g=¸ in (14) would not change at all. Equation (13) is almost scale-invariant: if the unit of

X(t) scales up by a factor of A, then g=¸ in (13) remains the same, while ¸=¹ becomes (¸=¹)A.

However, since ¸=¹ ¼ 1, the di®erence between ¸=¹ and (¸=¹)A is generally insigni¯cant unless
A is very large.

In certain sense, the pricing method via (13) or (14) reminds us of the relative pricing idea

in the valuation of contingent claims, such as in the Black-Scholes model (Black-Scholes, 1973),

in which, given the price of a stock, the price of an option of the stock is calculated relative

to the value of the stock. Essentially, the model here provides a way for relative pricing, by

evaluating the price of a growth stock relative to its peers within the group (the contribution

of the peer group is to provide an estimate of ¸=¹, g=¸; and the relative ranks). This echoes

a principle underlying the Black-Scholes model that when absolute pricing is di±cult relative

pricing may be easier.

VI Numerical Illustrations

To illustrate the results in the previous sections for biotechnology stocks, we plot in Figure 2

the logarithm of their market capitalization relative to the largest biotechnology stock versus

the logarithm of their ranks. In other words, log(X(i)=X(1)) are plotted against log i . This can

be viewed as choosing X(1) as the unit of measurement. The six panels shown, which involve

139 biotechnology stocks14, re°ect January 2, 1998 and every 150 trading days thereafter. In

14The 139 stocks include most of the stocks listed in the Nasdaq biotechnology index and the BTK biotech-
nology index. See Appendix C for a list of these 139 biotechnology stocks.
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each panel, the total market capitalization of these 139 stocks are ¯rst computed by taking

the product of the number of outstanding shares and the share price; then the stocks with

a market capitalization not smaller than 0.5% of that of the largest stock are plotted. The

relationship (10) requires large market capitalization, and here \large-cap" are ad hoc adopted

as stocks having market capitalization at least as large as 0.5% of that of the largest stock. One

advantage of categorizing \largeness" relatively is that it automatically takes into account that

di®erent groups of stocks could have di®erent sizes (for example, even within growth stocks,

internet stocks tend to be larger than biotechnology stocks).
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Figure 2: Size distribution of biotechnology stocks

It is worth noting that the six days shown in Figure 2 include the days when the biotech-

nology stocks were performing well, as well as the days when the biotechnology stocks were

grounded heavily. Nevertheless, in all six plots there is clearly a linear trend, a pattern pre-

dicted by the model.

Contrastingly, in Figures 3 and 4, for the same six trading days, the logarithm of the market

capitalization of the 20 Dow transportation15 stocks and 88 saving and loan stocks16 relative to

15The 20 Dow transportation stocks are listed in Appendix C, among which the smallest one has a market
capitalization about 2% of that of the largest.
16The 88 saving and loan stocks are listed in Appendix C.
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the largest one is plotted against the logarithm of their rank. The plot of Dow transportation

stocks is far from linear. For the saving and loan stocks, although in some days there may be a

linear pattern (e.g. Dec. 21, 2000), the pattern disappears in other days and is not consistent

at all. The non-linear pattern is again expected from the model, since the convergence of non-

growth stocks to the steady state distribution (governed by the decay parameter) is generally

too slow to be observed in practice.
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Figure 3: Plot for the 20 Dow transportation stocks

For the biotechnology stocks in Figure 2, the parameters g=¸ and ¸=¹ are estimated by

¯tting the model (13) to the data. The estimates dg=¸ and ḑ=¹ can be simply obtained by
minimizing the squared errors for log(X(i)=X(1)):

(dg=¸; ḑ=¹) = arg min
( g
¸
;¸
¹
)

KX
i=1

"
log

X(i)
X(1)

¡ f¡ 1

1¡ g=¸ log i+
1

1¡ g=¸
³
X(i) ¡X(1)

´
log

µ
¸

¹

¶
g
#2
;

(15)

For example, for the ¯rst panel in Figure 2 (January 2, 1998), g=¸ and ¸=¹ are estimated to be

0:08 and 1¡ 1:38£ 10¡9 respectively. For growth stocks, since g (which models, for example,
new shares being issued and warranties being exercised) is at least as large as that of non-growth

stocks, the above numbers, hence, suggest that both ¸ and ¹ must be large and that ¸=¹ ¼ 1,
thus con¯rming our earlier assumptions (A3) and (A4). Table 1 reports the estimated dg=¸ and
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Figure 4: Plot for saving and loan Stocks

ḑ=¹ as well as the R2, which measures the goodness-of-¯t17, for all the six panels in Figure 2.
Note that dg=¸ are all small and that ḑ=¹ are very close to 1.

Using the estimated values of g=¸ and ¸=¹, the dashed lines in Figures 5 show the relation-

ship between the log-market capitalization and the log-rank, as suggested by the model. They

agree well with the empirical observation. The R2 being at least 97% directly supports the

visual impression.

dg=¸ 1¡ ḑ=¹ R2

Jan 2, 98 0:080 1:38£ 10¡9 97:8%
Aug 7, 98 0:165 1:25£ 10¡9 98:2%
Mar 15, 99 0:295 1:06£ 10¡9 98:3%
Oct 15, 99 0:272 1:09£ 10¡9 99:2%
May 19, 00 0:197 1:20£ 10¡9 98:6%
Dec 21, 00 0:265 5:65£ 10¡9 97:5%

Table 1: The R2 and estimated g=¸ and ¸=¹ for Biotechnology Stocks

As a further illustration, Figure 6 shows the empirical and estimated size distribution for

17Like in the linear regression, here R2 is simply de¯ned as 1 ¡ (variance of the residuals )=(variance of the
observed responses).
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Figure 5: Empirical and estimated size distribution for biotechnology stocks

internet stocks. The six panels represent January 4, 1999 and every 100 trading days onward18.

Again the expected linear pattern emerges. Table 2, for the internet stocks, reports the esti-

mated parameters and the R2, which is at least 94%.

dg=¸ 1¡ ḑ=¹ R2

Jan 4, 99 0:365 1:47£ 10¡6 97:3%
May 27, 99 0:298 1:60£ 10¡6 96:8%
Oct 19, 99 0:211 1:18£ 10¡9 99:0%
Mar 13, 00 0:135 1:12£ 10¡7 94:0%
Aug 3, 00 0:234 1:15£ 10¡9 99:5%
Dec 26, 00 0:315 4:51£ 10¡7 99:4%

Table 2: The R2 and estimated g=¸ and ¸=¹ for Internet Stocks

Equation (15) is considered here mainly because (a) it is easy to implement and (b) the focus

here is more illustrative than precise estimation. We shall point out that there are other ways,

such as likelihood based method, to estimate the parameters, which might be more e±cient.

We conclude this section by presenting the picture of the recent market. Figure 7 shows

18Totally 70 internet stocks are involved. See Appendix C for the list. The plot starts from January 4, 1999
because there were not many internet stocks before 1999.
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Figure 6: Empirical and estimated size distribution for internet stocks

the size distribution of biotechnology, internet stocks as of August 22, 2001. The clear linear

pattern for biotechnology and internet stocks expected by the model again emerges. Table 3

reports the estimated parameters and the R2. Note that the \internet bubble" has burst then;

for example, the American stock exchange internet index (IIX) was 688.52 on 3/27/2000 and

was only 141.21 on 8/22/2001. The ¯tting is well even under this severe market downturn.
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Figure 7: The size distribution for the recent market (August 22, 2001)
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dg=¸ 1¡ ḑ=¹ R2

Biotech Stocks 0:192 9:23£ 10¡7 96:4%
Internet Stocks 0:362 3:43£ 10¡6 98:5%

Table 3: The R2 and estimated parameters for the recent market (August 22, 2001)

VII Discussion

By utilizing the high volatility of growth stocks, the paper proposes, based on both the tran-

sient and steady state behavior of birth-death processes, a model for growth stocks, which are

otherwise quite di±cult to price using traditional valuation methods.

There are two useful properties of the model. First, the model leads to a relative pricing

formula, equation (13), which can be used to value growth stocks, including both biotechnology

and internet stocks, relative to their peers. The method only uses regression and relative ranks,

which are easy to implement. Secondly, the model remains valid irrespective to the market ups

and downs, mainly because the model compares the value of a stock against the other stocks

within its peer group.

There are several limitations of the model. (a) An problem that we are currently investigat-

ing is the possible e®ect of merger and acquisition. For example, currently (as of 2001) internet

stocks have many more activities of merger and acquisition than biotechnology stocks. Thus,

from this point of view, the current model is perhaps more suitable for biotechnology stocks

than for internet stocks. (b) The model only applies to growth stocks with a large enough

market capitalization, i.e. large-cap growth stocks. It does not attempt to provide a solution

to small-cap growth stocks. (c) The model focuses on market capitalization, and does not take

other possible factors, e.g. outstanding debt of companies, into account. One intuitive expla-

nation of why the ¯t is good without including the debt is that most growth companies may

not use debt as a major way of ¯nancing; thus the debt level may be low for growth stocks. (d)

The model is not meant to be a tool for trading purposes. There are at least two reasons for

this. First, we did not provide a dynamics of the relative ranks for growth stocks; therefore, the

model is only meant as an understanding of growth stocks as a whole rather than as a model

for any individual growth stock. Secondly, if after ¯tting the model to the data, one ¯nds an

\outlier", i.e. an individual stock whose market capitalization lies far away from the regression

line, this does not necessarily mean that a trading opportunity arises; rather, one should pay

special attention to the outlier and try to investigate other possible factors, such as debt level

and merger and acquisition activities, related to the outlier.
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A major disadvantage of the model, as pointed out by Herbert Simon and others for models

based on the size distribution, is that they may put too much emphasis on the role of chance

and too little on speci¯c economic factors that might a®ect the distribution; see, for example,

Lydall (p. 21, 1968). In this regard, it is encouraging to point out that Lucas (1978) provides an

equilibrium justi¯cation of some size distributions for business ¯rm sizes. We are investigating

whether an equilibrium justi¯cation can be made for the current model as well.

Because of these limitations, as a cautionary remark, the model is only intended to provide

a quick and ¯rst-order approximation19 to a di±cult yet important problem: how to value

volatile growth stocks without any earnings.

Appendix

A Proofs of the Propositions 1 and 2

Proof of Proposition 1. (1) To show that the birth-death process is positive recurrent, it is

enough to check that
P1
n=0

1
¸n¼n

=1 and
P1
n=0 ¼n <1; see Kijima (1997, p. 245). The result

follows as
P1
n=0

1
¸n¼n

has the same order of
P1
n=0

1
n¸+g

¡¹
¸

¢n
n1¡g=¸+h=¹ =1; andP1

n=0 ¼n has

the same order of
P1
n=0

³
¸
¹

´n
ng=¸¡h=¹¡1 <1; thanks to the assumption that ¹ > ¸.

(2) The equation (3) follows from the fact that limz!1 zb¡a ¡(z+a)¡(z+b) = 1:

(3) First we consider
P1
k=n ¼k, which, according to (2), is

1X
k=n

¼k = ®
1X
k=n

µ
¸

¹

¶k ¡(k + g=¸)

¡(k + 1 + h=¹)
;

where ® := ¡(1+h=¹)
¡(g=¸) : The de¯nition of the hypergeometric function yields

1X
k=n

¼k = ®

µ
¸

¹

¶n ¡(n+ g=¸)

¡(n+ 1 + h=¹)
F (n+

g

¸
; 1;n+ 1 +

h

¹
;
¸

¹
)

= ¼nF (n+
g

¸
; 1;n+ 1 +

h

¹
;
¸

¹
); for n ¸ 0: (16)

In particular, we obtain that

S =
1X
n=0

¼n = ¼0F (
g

¸
; 1; 1 +

h

¹
;
¸

¹
) = F (

g

¸
; 1; 1 +

h

¹
;
¸

¹
):

19Using a real option approach, Schwartz and Moon (2000) propose another interesting model to value internet
stocks.
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The moment generating function is given by

M(µ) =
1X
n=0

eµn¼n=S =
1

S

1X
n=0

®

µ
¸

¹
eµ
¶n ¡(n+ g=¸)

¡(n+ 1+ h=¹)

= F (
g

¸
; 1; 1 +

h

¹
;
¸

¹
eµ)=S

= F (
g

¸
; 1; 1 +

h

¹
;
¸

¹
eµ)=F (

g

¸
; 1; 1 +

h

¹
;
¸

¹
):

The results about the mean and the second moment follow easily via the following property of

the hypergeometric function (see also formula 15.2.1 of Abramowitz and Stegun, 1972):

d

dz
F (a; b; c; z) =

ab

c
F (a+ 1; b+ 1; c+ 1; z):

(4) By (16),

F (n) = ¼nF (n+
g

¸
; 1;n+ 1+

h

¹
;
¸

¹
)=S:

So we only have to study the limiting behavior of F (n+ g
¸ ; 1;n+1+

h
¹ ;

¸
¹). Using formula 15.3.5

of Abramowitz and Stegun (1972), F (a; b; c; z) = (1¡ z)¡bF (b; c¡ a; c; z
z¡1); we have

F (n+
g

¸
; 1;n+ 1 +

h

¹
;
¸

¹
) = (1¡ ¸

¹
)¡1F (1; 1 +

h

¹
¡ g

¸
;n+ 1 +

h

¹
;
¸

¸¡ ¹):

But from the de¯nition of the hypergeometric function, it is easily seen that (see Section 2.3.2

of Erd¶elyi et. al, 1953, Vol. 1) F (1; 1 + h
¹ ¡ g

¸ ;n+ 1 +
h
¹ ;

¸
¸¡¹)! 1: Therefore we obtain

F (n) »= ®

S
(1¡ ¸

¹
)¡1

µ
¸

¹

¶n
ng=¸¡h=¹¡1;

from which the proof of Proposition 1 is terminated. 2

Proof of Proposition 2. We start from the forward Kolmogorov equations of a birth-death

process (see Karlin and Taylor, 1975, page 136):

p0i;0(t) = ¡¸0pi;0(t) + ¹1pi;1(t);
p0i;j(t) = ¸j¡1pi;j¡1(t)¡ (¸j + ¹j)pi;j(t) + ¹j+1pi;j+1(t); j ¸ 1;

which in our case is

p0i;0(t) = ¡gpi;0(t) + (¹+ h)pi;1(t);
p0i;j(t) = (¸(j ¡ 1) + g)pi;j¡1(t)¡ ((¸+ ¹)j + g + h)pi;j(t) + (¹(j + 1) + h)pi;j+1(t); j ¸ 1:
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Multiplying the jth equation by j and taking a sum yields

m01(t) = (¸¡ ¹)m1(t) + g + h(1¡ pi;0(t));

with the initial condition m1(0) = i. The solution is

m1(t) = ie
(¸¡¹)t +

g

¹¡ ¸ [1¡ e
(¸¡¹)t] + h

Z t

0
e(¹¡¸)(s¡t)(1¡ pi;0(s))ds:

Similarly, multiplying the jth equation by j2 and summing leads to

m02(t) = 2(¸¡ ¹)m2(t) + (¸+ ¹+ 2g ¡ 2h)m1(t) + g + h(1¡ pi;0(t));

with the initial condition m2(0) = i
2. The solution for this di®erential equation is

m2(t) = i2e2(¸¡¹)t +
g

2(¹¡ ¸) [1¡ e
2(¸¡¹)t] + h

Z t

0
e2(¹¡¸)(s¡t)(1¡ pi;0(s))ds+

+(¸+ ¹+ 2g ¡ 2h)
Z t

0
e2(¹¡¸)(s¡t)m1(s)ds;

from which the result follows. 2

B Calculating the Decay Parameters

To study the decay parameter of the birth death process, we start from the following proposition

rephrased from Lemma 5.14 of Kijima (1997).

Proposition B.1. (Kijima, 1997) There exists a sequence fkig such that k0 =1, ki > 0
for all i ¸ 1, and

y = ¸i + ¹i+1 ¡ ¸i¹i
ki

¡ ki+1; i = 0; 1; 2; : : : ;

if and only if y · °.

Using the above proposition, we have

Proposition B.2. The decay parameter for the birth and death process (1) ° must satisfy

° ¸ ¹¡ ¸.
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Proof. Consider the sequence fkig de¯ned by(
k0 =1
¹¡ ¸ = ¸i + ¹i+1 ¡ ¸i¹i

ki
¡ ki+1; i ¸ 0 ;

i.e. (
k1 = ¸+ g + h

ki+1 = ¸i+1 + ¹i ¡ ¸i¹i
ki
; i ¸ 1 :

Let li = ki ¡ ¸i, i ¸ 1. Then (
l1 = h

li+1 =
li

¸i+li
¹i; i ¸ 1 :

It is easy to see that li ¸ 0 for all i ¸ 1, which says that ki > 0 for every i ¸ 1. By Proposition
B.1, we must have ° ¸ ¹¡ ¸. 2

The following result is useful in deriving an upper bound for the decay parameter °.

Proposition B.3. For any constant c > 0, consider the sequence ki de¯ned by(
k1 = ¸+ g + h¡ c; c > 0; h ¸ 0
ki+1 = ¸i+1 + ¹i ¡ ¸i¹i

ki
¡ c; i ¸ 1 :

Let li := ki ¡ ¸i, i ¸ 1, which has the following recurrence relation(
l1 = h¡ c; c > 0; h ¸ 0;
li+1 =

li
¸i+li

¹i ¡ c; i ¸ 1 : (17)

Then the sequence ki > 0 for all i ¸ 1 if and only if li > 0 for all i ¸ 1.

Proof. Suppose li > 0 for all i ¸ 1. Then immediately ki > ¸i > 0 for every i. We shall

prove the other direction by contradiction.

Suppose ki > 0 for all i ¸ 1 and lm · 0 for some m. The recurrence relation gives (i)

lm+1 · ¡c; (ii) li+1 · li ¹iki , 8i ¸ 1: Therefore,

lm+2 · lm+1¹m+1
km+1

· ¡c¹m+1
km+1

:

In general, for any M > m+ 1;

lM · ¡c
M¡1Y
j=m+1

¹j
kj
< 0:
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But note that 0 < kj = lj + ¸j < ¸j, for j ¸ m+ 1. We have

lM · ¡c
M¡1Y
j=m+1

¹j
¸j
< 0:

Since
¹j
¸j
! ¹

¸ > 1, the above line tells us that lM !¡1 exponentially fast. Therefore we must

have kj = lj + ¸j < 0 for some j ¸ m+ 1, contradicting the assumption. 2

Proof of Theorem 1. There are only two possibilities for °, either ° = ¹¡ ¸ or ° > ¹¡ ¸.
If ° = ¹¡ ¸, then the statement in the theorem automatically holds.

Now suppose ° = ¹ ¡ ¸ + c, with c > 0. The recurrence relationship of li in (17) implies
the simple fact that

li+1 > d ¸ 0 if and only if li > (c+ d) ¸i
¹i ¡ c¡ d:

In particular, for any number d ¸ 0,

if li+1 > d ¸ 0; then li > (c+ d)¸i
¹i
= c

¸i
¹i
+ d

¸i
¹i
:

Using it once again, we know that if li+1 > d ¸ 0 then

li¡1 > c
¸i¡1
¹i¡1

+

µ
c
¸i¡1
¹i¡1

+ d
¸i¡1
¹i¡1

¶
¸i
¹i
= c

¸i¡1
¹i¡1

+ c
¸i¡1
¹i¡1

¸i
¹i
+ d

¸i¡1
¹i¡1

¸i
¹i
:

In general, simple induction gives that if li+1 > d ¸ 0 then for any j · i,

lj > c

(
¸j
¹j
+
¸j
¹j

¸j+1
¹j+1

+ ¢ ¢ ¢+ ¸j
¹j

¸j+1
¹j+1

¢ ¢ ¢ ¸i
¹i

)
+ d

¸j
¹j

¸j+1
¹j+1

¢ ¢ ¢ ¸i
¹i
:

Letting d = 0, j = 1, i!1 and using the fact that

¸i
¹i
=
i¸+ g

i¹+ h
¸ » := min(¸

¹
;
¸+ g

¹+ h
) for any i ¸ 1

yield

l1 > cf» + »2 + ¢ ¢ ¢g = c»=(1¡ »):
But, by the de¯nition in (17), l1 = h¡ c; which gives

c < h(1¡ »); 8h ¸ 0: (18)

Now if h = 0, then (18) leads to a contraction as c is assumed to be positive. Thus, when

h = 0, ° must be equal to ¹¡ ¸. If h > 0, then (18) yields

° = ¹¡ ¸+ c < ¹¡ ¸+ h(1¡ ») = ¹¡ ¸+ h[1¡min(¸
¹
;
¸+ g

¹+ h
)];

from which the conclusion follows. 2
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C Lists of the Stocks Used in the Numerical Illustration

Except the stocks (e.g. non-U.S. stocks) that are not included in the Center for Research in

Security Prices (CRSP) historical database and the stocks no longer exist because of merger or

bankruptcy, we use all the biotechnology stocks included in the Nasdaq biotech index (IXBT)

and the Amex biotech index (BTK); all the internet stocks included in the Amex internet

index (IIX), the Dow Jones composite internet index (DJINET), the Street.com internet index

(DOT), the Amex Internet Infrastructure HOLDRS (IIH), the Amex B2B Internet HOLDRS

(BHH), and the Amex Internet HOLDRS (HHH); and all the saving and loan stocks included

in the Philadelphia exchange bank index (BKX), the S&P bank index (BIX), the regional bank

HOLDRS (RKH), the Nasdaq Financial-100 index (IXF).

To save space, instead of the full names, we only list the stocks by their ticket symbols.

Dow Transportation Stocks

abf alex amr bni cnf csx dal fdx gmt jbht
nsc nwac road r luv ual unp u usfc yell

Internet Stocks

adbe agil akam amtd amzn artg athm beas brcm bvsn
ckfr cmgi cmrc coms cs csco dclk ebay et epny
exds fmkt goto hlth homs icge imgx inap inkt insp
intu isld issx itwo iwov jnpr kana lvlt macr navi
neta novl nxcd omkt pegs pcln ppro prsf psix q
qcom qrsi retk rnwk rsas scnt sgi spln sqst sunw
tibx tmcs tmpw usix vert vign vitr vntr vrsn yhoo

Biotechnology Stocks

adrx aimm akrn alks allp alxn amgn amln anik apht aria arql
astm atis atlc atrx avgn avii avir avxt axph bcii bcrx bgen
blsi blud bste btgc btrn carn cbst cege ceph cers cgpi chir
clgy cnct corr crxa ctic cvas cvtx cypb cyph cyto cytr dcrn
dige drmd dsco dusa emis enmd enzn epix ergo gene genz gern
ggen gild glfd glia gnlb gnta gztc heph hgsi hysq iart iccc
icos idph ilxo imcl imgn immu imnr imnx incy inhl inkp ipic
isip kosp lgnd ljpc lynx matx mcde medi medx mlnm mogn mrvt
mygn nabi nbix neot nerx n°d novn npro npsp nrgn onxx org
orph osip oxgn pars pcyc pdli pgnx regn rgen rzym sang scio
scln scri sepr sero snap snus supg teva tgen tktx trms vicl
vion virs vphm vrtx vvus zmtx zona
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Saving and Loan Stocks

am¯ asbc asfc aso bk bokf bpop caty cbcf cbsh
cbss cfbx chfc cma cmb cors cvbf ewbc fban fcnca
fctr ®bc ¯tb fmbi fmer ftbk ftu fult gbbk harb
hban hbhc ibnk iboc icbc irwn jpm key mafb mel
mi mrbk ncc npbc ntrs nwsb nycb ok oldb one
pbct pbks pfgi pnc rbnc rgbk rigs rsln sabb sbib
sivb skyf snv sotr srce stba sti stt sub susq
swbt trbs trmk trst tsfg ubsi ucbh umbf usb wabc
wb wbpr wbst wfsl wm wsbc wtny zion

References

[1] Abramowitz, M. and Stegun, I.A. (1972). Handbook of Mathematical Function. U. S. Na-
tional Bureau of Standards, 10th Printing.

[2] Axtell, R. L. (2001). Zipf distribution of U.S. ¯rm sizes. Science, Vol 293, Sept. 7th, pp.
1818-1820.

[3] Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. J. Polit.
Econ., 81 , 637-659.

[4] Erd¶elyi, A. et. al (1953). Bateman Manuscript Project. High Transcendental Functions.
Vol. 1, McGraw-Hill.

[5] Feenberg, D. and Poterba, J. (1993). Income inequality and the incomes of very high-
income taxpayers: evidence from tax returns, in Tax Policy and the Economy, Vol. 7, J.
Poterba ed. MIT press, pp. 145-177.

[6] Gabaix, X. (1999). Zipf's law for cities: an explanation. Quarterly Journal of Economics.
Vol. 154, pp. 739-767.

[7] Gibrat, R. (1931). Les in¶egalit¶es ¶economiques. Paris, France.

[8] Glaeser, E., Scheinkman, J., and Shleifer, A. (1995), Economic Growth in a Cross-Section
of Cities. Journal of Monetary Economics, Vol 36, pp. 117-143.

[9] Ijiri, Y. and Simon, H. A. (1977). Skew Distributions and the Sizes of Business Firms.
North-Holland Publishing Company.

[10] Lydall, H. F. (1968). The Structure of Earnings. Oxford University Press.

[11] Karlin, S. and McGregor, J. (1958). Linear growth, birth and death processes. Journal of
Mathematics and Mechanics. Vol. 7, pp. 643-662.

[12] Karlin, S. and Taylor, H. (1975). A First Course in Stochastic Processes. 2nd Ed. Academic
Press.

[13] Kerins, F., Smith, J. K. and Smith, R. (2001). New venture opportunity cost of capital
and ¯nancial contracting. Working paper, Washington State University.

28



[14] Kijima, M. (1997). Markov Processes for Stochastic Modeling. Chapman & Hall.

[15] Krugman, P. (1996a). The Self-Organizing Economy. Blackwell, Cambridge, MA.

[16] Krugman, P. (1996b). Confronting the urban mystery. Journal of the Japanese and Inter-
national Economies. Vol 10, pp. 399-418.

[17] Lucas, R. (1978). On the size distribution of business ¯rms. Bell Journal of Economics.
pp. 508-523.

[18] Mandelbrot, B. (1960). The Pareto-L¶evy Law and the distribution of income. International
Economic Review, pp. 79-106.

[19] Mauboussin, M. J. and Schay, A. (2000). Still powerful: the internet's hidden order. Equity
research report. Credit Suisse First Boston Corporation, July 7, 2000.

[20] Pareto, V. (1896). Cours d' Economie Politique. Geneva, Switzerland.

[21] Rutherford, R. (1955). Income distributions: a new model. Econometrica, Vol. 23, pp.
425-440.

[22] Schwartz, E. and Moon, M. (2000). Rational pricing of internet companies. Financial
Analysts Journal. May/June, pp. 62-75.

[23] Shorrocks, A. F. (1975). On stochastic models of size distributions. Review of Economic
Studies. pp. 631-641.

[24] Simon, H. A. (1955). On a class of skew distribution functions. Biometrika. Vol. 52, pp.
425-440.

[25] Simon, H. A. and Bonini, C. P. (1958). The size distribution of business ¯rms. American
Economics Review. Vol 48, pp. 607-617.

[26] Steindl, J. (1965). Random Processes and the Growth of Firms. Hafner, New York City.

[27] Steindl, J. (1968). Size distributions in economics, in International Encyclopedia of the
Social Sciences, Vol. 14, Silks, ed., Macmillan Press, New York City.

[28] Yule, G. U. (1924). A mathematical theory of evolution, based on the conclusions of Dr.
J. R. Willis, F.R.S. Phil. Trans. B, Vol. 213, pp. 21-83.

[29] Yule, G. U. (1944). The Statistical Study of Literary Vocabulary. Cambridge University
Press.

[30] Zipf, G. (1949). Human Behavior and the Principle of Least E®ort. Addison-Wesley Press.

29


