36 research outputs found

    Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to cancer therapeutics

    Get PDF
    It is not understood why healthy tissues can exhibit varying levels of sensitivity to the same toxic stimuli. Using BH3 profiling, we find that mitochondria of many adult somatic tissues, including brain, heart, and kidneys, are profoundly refractory to pro-apoptotic signaling, leading to cellular resistance to cytotoxic chemotherapies and ionizing radiation. In contrast, mitochondria from these tissues in young mice and humans are primed for apoptosis, predisposing them to undergo cell death in response to genotoxic damage. While expression of the apoptotic protein machinery is nearly absent by adulthood, in young tissues its expression is driven by c-Myc, linking developmental growth to cell death. These differences may explain why pediatric cancer patients have a higher risk of developing treatment-associated toxicities

    Preclinical modeling of lower-grade gliomas

    Get PDF
    Models for human gliomas prove critical not only to advancing our understanding of glioma biology but also to facilitate the development of therapeutic modalities. Specifically, creating lower-grade glioma (LGG) models has been challenging, contributing to few investigations and the minimal progress in standard treatment over the past decade. In order to reliably predict and validate the efficacies of novel treatments, however, LGG models need to adhere to specific standards that recapitulate tumor genetic aberrations and micro-environment. This underscores the need to revisit existing models of LGG and explore prospective models that may bridge the gap between preclinical insights and clinical translation. This review first outlines a set of criteria aimed to address the current challenges hindering model development. We then evaluate the strengths and weaknesses of existing preclinical models of LGG with respect to these established standards. To conclude, the review discusses potential future directions for integrating existing models to maximize the exploration of disease mechanisms and therapeutics development

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Protocol to establish a genetically engineered mouse model of IDH1-mutant astrocytoma

    No full text
    Summary: Lower-grade gliomas exhibit a high prevalence of isocitrate dehydrogenase 1 (IDH1) mutations, but faithful models for studying these tumors are lacking. Here, we present a protocol to establish a genetically engineered mouse (GEM) model of grade 3 astrocytoma driven by the Idh1R132H oncogene. We describe steps for breeding compound transgenic mice and intracranially delivering adeno-associated virus particles, followed by post-surgical surveillance via magnetic resonance imaging. This protocol enables the generation and use of a GEM to study lower-grade IDH-mutant gliomas.For complete details on the use and execution of this protocol, please refer to Shi et al. (2022).1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics

    Patient-Derived Cancer Organoids for Precision Oncology Treatment

    No full text
    The emergence of three-dimensional human organoids has opened the door for the development of patient-derived cancer organoid (PDO) models, which closely recapitulate parental tumor tissue. The mainstays of preclinical cancer modeling include in vitro cell lines and patient-derived xenografts, but these models lack the cellular heterogeneity seen in human tumors. Moreover, xenograft establishment is resource and time intensive, rendering these models difficult to use to inform clinical trials and decisions. PDOs, however, can be created efficiently and retain tumor-specific properties such as cellular heterogeneity, cell–cell and cell–stroma interactions, the tumor microenvironment, and therapeutic responsiveness. PDO models and drug-screening protocols have been described for several solid tumors and, more recently, for gliomas. Since PDOs can be developed in clinically relevant time frames and share many characteristics of parent tumors, they may enhance the ability to provide precision oncologic care for patients. This review explores the current literature on cancer organoids, highlighting the history of PDO development, organoid models of glioma, and potential clinical applications of PDOs

    Oncogenic R132 IDH1 Mutations Limit NADPH for De Novo Lipogenesis through (D)2-Hydroxyglutarate Production in Fibrosarcoma Cells

    No full text
    Summary: Neomorphic mutations in NADP-dependent isocitrate dehydrogenases (IDH1 and IDH2) contribute to tumorigenesis in several cancers. Although significant research has focused on the hypermethylation phenotypes associated with (D)2-hydroxyglutarate (D2HG) accumulation, the metabolic consequences of these mutations may also provide therapeutic opportunities. Here we apply flux-based approaches to genetically engineered cell lines with an endogenous IDH1 mutation to examine the metabolic impacts of increased D2HG production and altered IDH flux as a function of IDH1 mutation or expression. D2HG synthesis in IDH1-mutant cells consumes NADPH at rates similar to de novo lipogenesis. IDH1-mutant cells exhibit increased dependence on exogenous lipid sources for in vitro growth, as removal of medium lipids slows growth more dramatically in IDH1-mutant cells compared with those expressing wild-type or enzymatically inactive alleles. NADPH regeneration may be limiting for lipogenesis and potentially redox homeostasis in IDH1-mutant cells, highlighting critical links between cellular biosynthesis and redox metabolism. : Badur et al. apply metabolic flux analysis to understand how oncogenic mutations in IDH1 alter redox metabolism. Production of (D)2-hydroxyglutarate (D2HG) consumes NADPH at levels similar to de novo lipogenesis, and removal of lipids compromises in vitro growth of IDH1-mutant cells. Keywords: IDH1, IDH2, redox metabolism, NADPH, 2-hydroxyglutrate (2HG), metabolism, metabolic flux analysis, cancer, deuteriu

    Contemporary Mouse Models in Glioma Research

    No full text
    Despite advances in understanding of the molecular pathogenesis of glioma, outcomes remain dismal. Developing successful treatments for glioma requires faithful in vivo disease modeling and rigorous preclinical testing. Murine models, including xenograft, syngeneic, and genetically engineered models, are used to study glioma-genesis, identify methods of tumor progression, and test novel treatment strategies. Since the discovery of highly recurrent isocitrate dehydrogenase (IDH) mutations in lower-grade gliomas, there is increasing emphasis on effective modeling of IDH mutant brain tumors. Improvements in preclinical models that capture the phenotypic and molecular heterogeneity of gliomas are critical for the development of effective new therapies. Herein, we explore the current status, advancements, and challenges with contemporary murine glioma models
    corecore