229 research outputs found

    Xpert® MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resistance.

    Get PDF
    BACKGROUND: Tuberculosis (TB) is the world's leading infectious cause of death. Extrapulmonary TB accounts for 15% of TB cases, but the proportion is increasing, and over half a million people were newly diagnosed with rifampicin-resistant TB in 2016. Xpert® MTB/RIF (Xpert) is a World Health Organization (WHO)-recommended, rapid, automated, nucleic acid amplification assay that is used widely for simultaneous detection of Mycobacterium tuberculosis complex and rifampicin resistance in sputum specimens. This Cochrane Review assessed the accuracy of Xpert in extrapulmonary specimens. OBJECTIVES: To determine the diagnostic accuracy of Xpert a) for extrapulmonary TB by site of disease in people presumed to have extrapulmonary TB; and b) for rifampicin resistance in people presumed to have extrapulmonary TB. SEARCH METHODS: We searched the Cochrane Infectious Diseases Group Specialized Register, MEDLINE, Embase, Science Citation Index, Web of Science, Latin American Caribbean Health Sciences Literature (LILACS), Scopus, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform, the International Standard Randomized Controlled Trial Number (ISRCTN) Registry, and ProQuest up to 7 August 2017 without language restriction. SELECTION CRITERIA: We included diagnostic accuracy studies of Xpert in people presumed to have extrapulmonary TB. We included TB meningitis and pleural, lymph node, bone or joint, genitourinary, peritoneal, pericardial, and disseminated TB. We used culture as the reference standard. For pleural TB, we also included a composite reference standard, which defined a positive result as the presence of granulomatous inflammation or a positive culture result. For rifampicin resistance, we used culture-based drug susceptibility testing or MTBDRplus as the reference standard. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data, assessed risk of bias and applicability using the QUADAS-2 tool. We determined pooled predicted sensitivity and specificity for TB, grouped by type of extrapulmonary specimen, and for rifampicin resistance. For TB detection, we used a bivariate random-effects model. Recognizing that use of culture may lead to misclassification of cases of extrapulmonary TB as 'not TB' owing to the paucibacillary nature of the disease, we adjusted accuracy estimates by applying a latent class meta-analysis model. For rifampicin resistance detection, we performed univariate meta-analyses for sensitivity and specificity separately to include studies in which no rifampicin resistance was detected. We used theoretical populations with an assumed prevalence to provide illustrative numbers of patients with false positive and false negative results. MAIN RESULTS: We included 66 unique studies that evaluated 16,213 specimens for detection of extrapulmonary TB and rifampicin resistance. We identified only one study that evaluated the newest test version, Xpert MTB/RIF Ultra (Ultra), for TB meningitis. Fifty studies (76%) took place in low- or middle-income countries. Risk of bias was low for patient selection, index test, and flow and timing domains and was high or unclear for the reference standard domain (most of these studies decontaminated sterile specimens before culture inoculation). Regarding applicability, in the patient selection domain, we scored high or unclear concern for most studies because either patients were evaluated exclusively as inpatients at tertiary care centres, or we were not sure about the clinical settings.Pooled Xpert sensitivity (defined by culture) varied across different types of specimens (31% in pleural tissue to 97% in bone or joint fluid); Xpert sensitivity was > 80% in urine and bone or joint fluid and tissue. Pooled Xpert specificity (defined by culture) varied less than sensitivity (82% in bone or joint tissue to 99% in pleural fluid and urine). Xpert specificity was ≥ 98% in cerebrospinal fluid, pleural fluid, urine, and peritoneal fluid.Xpert testing in cerebrospinal fluidXpert pooled sensitivity and specificity (95% credible interval (CrI)) against culture were 71.1% (60.9% to 80.4%) and 98.0% (97.0% to 98.8%), respectively (29 studies, 3774 specimens; moderate-certainty evidence).For a population of 1000 people where 100 have TB meningitis on culture, 89 would be Xpert-positive: of these, 18 (20%) would not have TB (false-positives); and 911 would be Xpert-negative: of these, 29 (3%) would have TB (false-negatives).For TB meningitis, ultra sensitivity and specificity against culture (95% confidence interval (CI)) were 90% (55% to 100%) and 90% (83% to 95%), respectively (one study, 129 participants).Xpert testing in pleural fluidXpert pooled sensitivity and specificity (95% CrI) against culture were 50.9% (39.7% to 62.8%) and 99.2% (98.2% to 99.7%), respectively (27 studies, 4006 specimens; low-certainty evidence).For a population of 1000 people where 150 have pleural TB on culture, 83 would be Xpert-positive: of these, seven (8%) would not have TB (false-positives); and 917 would be Xpert-negative: of these, 74 (8%) would have TB (false-negatives).Xpert testing in urineXpert pooled sensitivity and specificity (95% CrI) against culture were 82.7% (69.6% to 91.1%) and 98.7% (94.8% to 99.7%), respectively (13 studies, 1199 specimens; moderate-certainty evidence).For a population of 1000 people where 70 have genitourinary TB on culture, 70 would be Xpert-positive: of these, 12 (17%) would not have TB (false-positives); and 930 would be Xpert-negative: of these, 12 (1%) would have TB (false-negatives).Xpert testing for rifampicin resistanceXpert pooled sensitivity (20 studies, 148 specimens) and specificity (39 studies, 1088 specimens) were 95.0% (89.7% to 97.9%) and 98.7% (97.8% to 99.4%), respectively (high-certainty evidence).For a population of 1000 people where 120 have rifampicin-resistant TB, 125 would be positive for rifampicin-resistant TB: of these, 11 (9%) would not have rifampicin resistance (false-positives); and 875 would be negative for rifampicin-resistant TB: of these, 6 (1%) would have rifampicin resistance (false-negatives).For lymph node TB, the accuracy of culture, the reference standard used, presented a greater concern for bias than in other forms of extrapulmonary TB. AUTHORS' CONCLUSIONS: In people presumed to have extrapulmonary TB, Xpert may be helpful in confirming the diagnosis. Xpert sensitivity varies across different extrapulmonary specimens, while for most specimens, specificity is high, the test rarely yielding a positive result for people without TB (defined by culture). Xpert is accurate for detection of rifampicin resistance. For people with presumed TB meningitis, treatment should be based on clinical judgement, and not withheld solely on an Xpert result, as is common practice when culture results are negative

    Perfect quantum error correction coding in 24 laser pulses

    Get PDF
    An efficient coding circuit is given for the perfect quantum error correction of a single qubit against arbitrary 1-qubit errors within a 5 qubit code. The circuit presented employs a double `classical' code, i.e., one for bit flips and one for phase shifts. An implementation of this coding circuit on an ion-trap quantum computer is described that requires 26 laser pulses. A further circuit is presented requiring only 24 laser pulses, making it an efficient protection scheme against arbitrary 1-qubit errors. In addition, the performance of two error correction schemes, one based on the quantum Zeno effect and the other using standard methods, is compared. The quantum Zeno error correction scheme is found to fail completely for a model of noise based on phase-diffusion.Comment: Replacement paper: Lost two laser pulses gained one author; added appendix with circuits easily implementable on an ion-trap compute

    What if They Don't Have Tuberculosis? The Consequences and Trade-offs Involved in False-positive Diagnoses of Tuberculosis.

    Get PDF
    To find the millions of missed tuberculosis (TB) cases, national TB programs are under pressure to expand TB disease screening and to target populations with lower disease prevalence. Together with imperfect performance and application of existing diagnostic tools, including empirical diagnosis, broader screening risks placing individuals without TB on prolonged treatment. These false-positive diagnoses have profound consequences for TB patients and prevention efforts, yet are usually overlooked in policy decision making. In this article we describe the pathways to a false-positive TB diagnosis, including trade-offs involved in the development and application of diagnostic algorithms. We then consider the wide range of potential consequences for individuals, households, health systems, and reliability of surveillance data. Finally, we suggest practical steps that the TB community can take to reduce the frequency and potential harms of false-positive TB diagnosis and to more explicitly assess the trade-offs involved in the screening and diagnostic process

    Evaluation of the diagnostic performance of laboratory-based c-reactive protein as a triage test for active pulmonary tuberculosis.

    Get PDF
    INTRODUCTION: A highly sensitive triage test that captures most symptomatic patients at increased likelihood of having pulmonary tuberculosis (PTB) would 'rule-out' lower-risk patients from expensive confirmatory testing. Although studies have assessed the diagnostic accuracy of a C-reactive protein (CRP) triage test for PTB in HIV+ patients, limited data are available from HIV- cohorts. MATERIALS AND METHODS: In this retrospective case-control study, 765 serum samples were selected from FIND's biobank. Each sample had been collected from an adult presenting with respiratory symptomatology to district hospitals in South Africa and referral hospitals in Cambodia, Peru, Georgia and Vietnam between 2007-2017. Serum CRP measurements were obtained using a laboratory-based assay. CRP cutoff-points of ≥8mg/L and ≥10mg/L were predefined as a positive triage test result. The PTB reference standard was two contemporaneously collected sputum liquid culture results. RESULTS: CRP demonstrated an overall sensitivity for PTB of 79.8% (95%CI 75.5-83.5) and 77.7% (95%CI 73.4-81.6) for cutoff-points of 8mg/L and 10mg/L respectively. Specificity was 62.8% (95%CI 57.8-67.6%) and 66.6% (95%CI 61.1-70.7) respectively. Area-under-the-curve using Receiver Operating Characteristic analysis was 0.77 (95%CI 0.74-0.81). Threshold analysis showed optimal CRP cutoff-points were higher in HIV+ than HIV- participants. An algorithm in which CRP triage was followed by confirmatory Xpert MTB/Rif testing achieved a sensitivity of 75.1% (95%CI 69.0-80.4%) whilst decreasing Xpert usage by 40.6%. DISCUSSION: CRP may not meet the challenge of a catch-all TB triage test. However, it shows promise in HIV+ individuals. Further research is required in a prospective study using point-of-care platforms to further evaluate its capabilities

    Comparing accuracy of lipoarabinomannan urine tests for diagnosis of pulmonary tuberculosis in children from four African countries: a cross-sectional study.

    Get PDF
    BACKGROUND: A sensitive and specific non-sputum-based test would be groundbreaking for the diagnosis of childhood tuberculosis. We assessed side by side the diagnostic accuracy of the urine-based lipoarabinomannan assays Fujifilm SILVAMP TB LAM (FujiLAM) and Alere Determine TB LAM Ag (AlereLAM) for detection of childhood tuberculosis. METHODS: In this cross-sectional study, we tested urine samples from children younger than 15 years with presumed pulmonary tuberculosis. Children were consecutively recruited from four dedicated outpatient childhood tuberculosis clinics in The Gambia, Mali, Nigeria, and Tanzania. Biobanked urine samples were thawed and tested using FujiLAM and AlereLAM assays. We measured diagnostic performance against a microbiological reference standard (confirmed tuberculosis) and a composite reference standard (confirmed and unconfirmed tuberculosis). Sensitivity and specificity were estimated with bivariate random-effects meta-analyses. FINDINGS: Between July 1, 2017, and Dec 1, 2018, we obtained and stored urine samples from 415 children. 63 (15%) children had confirmed tuberculosis, 113 (27%) had unconfirmed tuberculosis, and 239 (58%) were unlikely to have tuberculosis. 61 children were HIV-positive (prevalence 15%). Using the microbiological reference standard, the sensitivity of FujiLAM was 64·9% (95% CI 43·7-85·2; positive in 40 of 63 confirmed samples) and the sensitivity of AlereLAM was 30·7% (8·6-61·6; 19 of 63). The specificity of FujiLAM was 83·8% (95% CI 76·5-89·4; negative in 297 of 352 unconfirmed and unlikely samples) and the specificity of AlereLAM was 87·8% (79·0-93·7; 312 of 352). Against the composite reference standard, both assays had decreased sensitivity; the sensitivity of FujiLAM was 32·9% (95% CI 24·6-41·9; positive in 58 of 176 confirmed and unconfirmed samples) and the sensitivity of AlereLAM was 20·2% (12·3-29·4; 36 of 176). The specificity of FujiLAM was 83·3% (95% CI 71·8-91·7; negative in 202 of 239 unlikely samples) and the specificity of AlereLAM was 90·0% (81·6-95·6; 216 of 239). INTERPRETATION: By comparison with AlereLAM, FujiLAM showed higher sensitivity and similar specificity. FujiLAM could potentially add value to the rapid diagnosis of tuberculosis in children. FUNDING: German Federal Ministry of Education and Research, the Global Health Innovative Technology Fund, the UK Research and Innovation Global Challenges Research Fund, and the UK Medical Research Council

    Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis.

    Get PDF
    Only 25% of multidrug-resistant tuberculosis (MDR-TB) cases are currently diagnosed. Line probe assays (LPAs) enable rapid drug-susceptibility testing for rifampicin (RIF) and isoniazid (INH) resistance and Mycobacterium tuberculosis detection. Genotype MTBDRplusV1 was WHO-endorsed in 2008 but newer LPAs have since been developed. This systematic review evaluated three LPAs: Hain Genotype MTBDRplusV1, MTBDRplusV2 and Nipro NTM+MDRTB. Study quality was assessed with QUADAS-2. Bivariate random-effects meta-analyses were performed for direct and indirect testing. Results for RIF and INH resistance were compared to phenotypic and composite (incorporating sequencing) reference standards. M. tuberculosis detection results were compared to culture. 74 unique studies were included. For RIF resistance (21 225 samples), pooled sensitivity and specificity (with 95% confidence intervals) were 96.7% (95.6–97.5%) and 98.8% (98.2–99.2%). For INH resistance (20 954 samples), pooled sensitivity and specificity were 90.2% (88.2–91.9%) and 99.2% (98.7–99.5%). Results were similar for direct and indirect testing and across LPAs. Using a composite reference standard, specificity increased marginally. For M. tuberculosis detection (3451 samples), pooled sensitivity was 94% (89.4–99.4%) for smear-positive specimens and 44% (20.2–71.7%) for smear-negative specimens. In patients with pulmonary TB, LPAs have high sensitivity and specificity for RIF resistance and high specificity and good sensitivity for INH resistance. This meta-analysis provides evidence for policy and practice

    Xpert Ultra versus Xpert MTB/RIF for pulmonary tuberculosis and rifampicin resistance in adults with presumptive pulmonary tuberculosis

    Get PDF
    Background Xpert MTB/RIF and Xpert MTB/RIF Ultra (Xpert Ultra) are World Health Organization (WHO)‐recommended rapid tests that simultaneously detect tuberculosis and rifampicin resistance in people with signs and symptoms of tuberculosis. This review builds on our recent extensive Cochrane Review of Xpert MTB/RIF accuracy. Objectives To compare the diagnostic accuracy of Xpert Ultra and Xpert MTB/RIF for the detection of pulmonary tuberculosis and detection of rifampicin resistance in adults with presumptive pulmonary tuberculosis. For pulmonary tuberculosis and rifampicin resistance, we also investigated potential sources of heterogeneity. We also summarized the frequency of Xpert Ultra trace‐positive results, and estimated the accuracy of Xpert Ultra after repeat testing in those with trace‐positive results. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register, MEDLINE, Embase, Science Citation Index, Web of Science, LILACS, Scopus, the WHO ICTRP, the ISRCTN registry, and ProQuest to 28 January 2020 with no language restriction. Selection criteria We included diagnostic accuracy studies using respiratory specimens in adults with presumptive pulmonary tuberculosis that directly compared the index tests. For pulmonary tuberculosis detection, the reference standards were culture and a composite reference standard. For rifampicin resistance, the reference standards were culture‐based drug susceptibility testing and line probe assays. Data collection and analysis Two review authors independently extracted data using a standardized form, including data by smear and HIV status. We assessed risk of bias using QUADAS‐2 and QUADAS‐C. We performed meta‐analyses comparing pooled sensitivities and specificities, separately for pulmonary tuberculosis detection and rifampicin resistance detection, and separately by reference standard. Most analyses used a bivariate random‐effects model. For tuberculosis detection, we estimated accuracy in studies in participants who were not selected based on prior microscopy testing or history of tuberculosis. We performed subgroup analyses by smear status, HIV status, and history of tuberculosis. We summarized Xpert Ultra trace results. Main results We identified nine studies (3500 participants): seven had unselected participants (2834 participants). All compared Xpert Ultra and Xpert MTB/RIF for pulmonary tuberculosis detection; seven studies used a paired comparative accuracy design, and two studies used a randomized design. Five studies compared Xpert Ultra and Xpert MTB/RIF for rifampicin resistance detection; four studies used a paired design, and one study used a randomized design. Of the nine included studies, seven (78%) were mainly or exclusively in high tuberculosis burden countries. For pulmonary tuberculosis detection, most studies had low risk of bias in all domains. Pulmonary tuberculosis detection Xpert Ultra pooled sensitivity and specificity (95% credible interval) against culture were 90.9% (86.2 to 94.7) and 95.6% (93.0 to 97.4) (7 studies, 2834 participants; high‐certainty evidence) versus Xpert MTB/RIF pooled sensitivity and specificity of 84.7% (78.6 to 89.9) and 98.4% (97.0 to 99.3) (7 studies, 2835 participants; high‐certainty evidence). The difference in the accuracy of Xpert Ultra minus Xpert MTB/RIF was estimated at 6.3% (0.1 to 12.8) for sensitivity and −2.7% (−5.7 to −0.5) for specificity. If the point estimates for Xpert Ultra and Xpert MTB/RIF are applied to a hypothetical cohort of 1000 patients, where 10% of those presenting with symptoms have pulmonary tuberculosis, Xpert Ultra will miss 9 cases, and Xpert MTB/RIF will miss 15 cases. The number of people wrongly diagnosed with pulmonary tuberculosis would be 40 with Xpert Ultra and 14 with Xpert MTB/RIF. In smear‐negative, culture‐positive participants, pooled sensitivity was 77.5% (67.6 to 85.6) for Xpert Ultra versus 60.6% (48.4 to 71.7) for Xpert MTB/RIF; pooled specificity was 95.8% (92.9 to 97.7) for Xpert Ultra versus 98.8% (97.7 to 99.5) for Xpert MTB/RIF (6 studies). In people living with HIV, pooled sensitivity was 87.6% (75.4 to 94.1) for Xpert Ultra versus 74.9% (58.7 to 86.2) for Xpert MTB/RIF; pooled specificity was 92.8% (82.3 to 97.0) for Xpert Ultra versus 99.7% (98.6 to 100.0) for Xpert MTB/RIF (3 studies). In participants with a history of tuberculosis, pooled sensitivity was 84.2% (72.5 to 91.7) for Xpert Ultra versus 81.8% (68.7 to 90.0) for Xpert MTB/RIF; pooled specificity was 88.2% (70.5 to 96.6) for Xpert Ultra versus 97.4% (91.7 to 99.5) for Xpert MTB/RIF (4 studies). The proportion of Ultra trace‐positive results ranged from 3.0% to 30.4%. Data were insufficient to estimate the accuracy of Xpert Ultra repeat testing in individuals with initial trace‐positive results. Rifampicin resistance detection Pooled sensitivity and specificity were 94.9% (88.9 to 97.9) and 99.1% (97.7 to 99.8) (5 studies, 921 participants; high‐certainty evidence) for Xpert Ultra versus 95.3% (90.0 to 98.1) and 98.8% (97.2 to 99.6) (5 studies, 930 participants; high‐certainty evidence) for Xpert MTB/RIF. The difference in the accuracy of Xpert Ultra minus Xpert MTB/RIF was estimated at −0.3% (−6.9 to 5.7) for sensitivity and 0.3% (−1.2 to 2.0) for specificity. If the point estimates for Xpert Ultra and Xpert MTB/RIF are applied to a hypothetical cohort of 1000 patients, where 10% of those presenting with symptoms have rifampicin resistance, Xpert Ultra will miss 5 cases, and Xpert MTB/RIF will miss 5 cases. The number of people wrongly diagnosed with rifampicin resistance would be 8 with Xpert Ultra and 11 with Xpert MTB/RIF. We identified a higher number of rifampicin resistance indeterminate results with Xpert Ultra, pooled proportion 7.6% (2.4 to 21.0) compared to Xpert MTB/RIF pooled proportion 0.8% (0.2 to 2.4). The estimated difference in the pooled proportion of indeterminate rifampicin resistance results for Xpert Ultra versus Xpert MTB/RIF was 6.7% (1.4 to 20.1). Authors' conclusions Xpert Ultra has higher sensitivity and lower specificity than Xpert MTB/RIF for pulmonary tuberculosis, especially in smear‐negative participants and people living with HIV. Xpert Ultra specificity was lower than that of Xpert MTB/RIF in participants with a history of tuberculosis. The sensitivity and specificity trade‐off would be expected to vary by setting. For detection of rifampicin resistance, Xpert Ultra and Xpert MTB/RIF had similar sensitivity and specificity. Ultra trace‐positive results were common. Xpert Ultra and Xpert MTB/RIF provide accurate results and can allow rapid initiation of treatment for rifampicin‐resistant and multidrug‐resistant tuberculosis

    Guidance for studies evaluating the accuracy of rapid tuberculosis drug-susceptibility tests

    Get PDF
    The development and implementation of rapid molecular diagnostics for tuberculosis (TB) drug-susceptibility testing is critical to inform treatment of patients and to prevent the emergence and spread of resistance. Optimal trial planning for existing tests and those in development will be critical to rapidly gather the evidence necessary to inform World Health Organization review and to support potential policy recommendations. The evidence necessary includes an assessment of the performance for TB and resistance detection as well as an assessment of the operational characteristics of these platforms. The performance assessment should include analytical studies to confirm the limit of detection and assay ability to detect mutations conferring resistance across globally representative strains. The analytical evaluation is typically followed by multisite clinical evaluation studies to confirm diagnostic performance in sites and populations of intended use. This paper summarizes the considerations for the design of these analytical and clinical studies.FIND (Foundation for Innovative New Diagnostics)https://academic.oup.com/jid2020-10-08am2019Medical Microbiolog

    HLA-DP on Epithelial Cells Enables Tissue Damage by NKp44+ Natural Killer Cells in Ulcerative Colitis

    Get PDF
    Background & aims: Ulcerative colitis (UC) is characterized by severe inflammation and destruction of the intestinal epithelium, and is associated with specific risk single nucleotide polymorphisms in HLA class II. Given the recently discovered interactions between subsets of HLA-DP molecules and the activating natural killer (NK) cell receptor NKp44, genetic associations of UC and HLA-DP haplotypes and their functional implications were investigated.Methods: HLA-DP haplotype and UC risk association analyses were performed (UC: n = 13,927; control: n = 26,764). Expression levels of HLA-DP on intestinal epithelial cells (IECs) in individuals with and without UC were quantified. Human intestinal 3-dimensional (3D) organoid cocultures with human NK cells were used to determine functional consequences of interactions between HLA-DP and NKp44.Results: These studies identified HLA-DPA1∗01:03-DPB1∗04:01 (HLA-DP401) as a risk haplotype and HLA-DPA1∗01:03-DPB1∗03:01 (HLA-DP301) as a protective haplotype for UC in European populations. HLA-DP expression was significantly higher on IECs of individuals with UC compared with controls. IECs in human intestinal 3D organoids derived from HLA-DP401pos individuals showed significantly stronger binding of NKp44 compared with HLA-DP301pos IECs. HLA-DP401pos IECs in organoids triggered increased degranulation and tumor necrosis factor production by NKp44+ NK cells in cocultures, resulting in enhanced epithelial cell death compared with HLA-DP301pos organoids. Blocking of HLA-DP401-NKp44 interactions (anti-NKp44) abrogated NK cell activity in cocultures.Conclusions: We identified an UC risk HLA-DP haplotype that engages NKp44 and activates NKp44+ NK cells, mediating damage to intestinal epithelial cells in an HLA-DP haplotype-dependent manner. The molecular interaction between NKp44 and HLA-DP401 in UC can be targeted by therapeutic interventions to reduce NKp44+ NK cell-mediated destruction of the intestinal epithelium in UC

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo
    corecore