135 research outputs found

    Ungulate preference for burned patches reveals strength of fire–grazing interaction

    Get PDF
    The interactions between fire and grazing are widespread throughout fire-dependent landscapes. The utilization of burned areas by grazing animals establishes the fire–grazing interaction, but the preference for recently burned areas relative to other influences (water, topography, etc.) is unknown. In this study, we determine the strength of the fire–grazing interaction by quantifying the influence of fire on ungulate site selection. We compare the preference for recently burned patches relative to the influence of other environmental factors that contribute to site selection; compare that preference between native and introduced ungulates; test relationships between area burned and herbivore preference; and determine forage quality and quantity as mechanisms of site selection. We used two large ungulate species at two grassland locations within the southern Great Plains, USA. At each location, spatially distinct patches were burned within larger areas through time, allowing animals to select among burned and unburned areas. Using fine scale ungulate location data, we estimated resource selection functions to examine environmental factors in site selection. Ungulates preferred recently burned areas and avoided areas with greater time since fire, regardless of the size of landscape, herbivore species, or proportion of area burned. Forage quality was inversely related to time since fire, while forage quantity was positively related. We show that fire is an important component of large ungulate behavior with a strong influence on site selection that drives the fire–grazing interaction. This interaction is an ecosystem process that supersedes fire and grazing as separate factors, shaping grassland landscapes. Inclusion of the fire–grazing interaction into ecological studies and conservation practices of fire-prone systems will aid in better understanding and managing these systems

    Comparison of Dog Surveys and Fall Covey Surveys in Estimating Fall Population Trends of Northern Bobwhite

    Get PDF
    The use of fall covey surveys to monitor population trends for northern bobwhite (Colinus virginianus; hereafter bobwhite) have been widely used in bobwhite research. Estimates of relative abundance from this monitoring technique are often important in assessing population responses to management practices or annual variation. However, conducting covey call surveys is labor intensive and typically can only be conducted during a narrow time frame. The use of dogs as a research tool may offer an efficient alternative to monitor bobwhite population trends. While dogs have been used in research for many other gallinaceous species, their application for bobwhite has received minimal research. To compare traditional and novel (dog) methods for both relative population abundance and density estimation, we conducted covey call surveys (50 points) and dog transects (32 km) during the fall (Sep-Oct) season from 2012-2014 at Beaver River WMA, Beaver County, Oklahoma, USA. A total of 306 detections were observed through fall covey count surveys, while only 44 detections were observed through dog transect surveys. Fall covey surveys yielded indices of 1.45, 2.04, and 3.21 detections per point count during 2012, 2013, and 2014, respectively. Dog transects yielded 0.23, 0.34, and 0.67 detections per km during 2012, 2013, and 2014, respectively. A Pearson’s correlation coefficient of 0.996 indicated high correlation between indices estimated between both survey methods. However, the low sample size for detections during dog surveys precluded any analysis that would yield bobwhite density estimates. Our results indicate that dog transects can be a method for estimating abundance indices for bobwhite. However, if estimates of bobwhite densities are of interest, then use of dog transect surveys are not recommended as only under high quail densities or with high observer efforts do enough detections accumulate for robust density estimation unless large effort is expended

    Effects of Pyric Herbivory on Prairie-Chicken (Tympanuchus spp) Habitat

    Get PDF
    The reduction and simplification of grasslands has led to the decline of numerous species of grassland fauna, particularly grassland-obligate birds. Prairie-chickens (Tympanuchus spp.) are an example of obligate grassland birds that have declined throughout most of their distribution and are species of conservation concern. Pyric herbivory has been suggested as a land management strategy for enhancing prairie-chicken habitat and stabilizing declining population trends. We assessed differences in vegetation structure created by pyric herbivory compared to fire-only treatments to determine whether pyric herbivory increased habitat heterogeneity for prairie-chickens, spatially or temporally. Our study was performed at four sites in the southern Great Plains, all within the current or historic distribution of either lesser (T. pallidicinctus), greater (T. cupido), or Attwater’s (T. cupido attwateri) prairie-chickens. Key vegetation characteristics of grass cover and vegetation height in pyric herbivory and fire-only treatments were within the recommended range of values for prairie-chickens during their distinct life history stages. However, patches managed via pyric herbivory provided approximately 5% more forb cover than fire-only treatments for almost 30 months post-fire. Additionally, pyric herbivory extended the length of time bare ground was present after fires. Pyric herbivory also reduced vegetation height and biomass, with mean vegetation height in pyric herbivory treatments lagging behind fire-only treatments by approximately 15 months. Canopy cover in fire-only treatments exceeded levels recommended for prairie-chicken young within 12 months post-fire. However, canopy cover in pyric herbivory treatments never exceeded the maximum recommended levels. Overall, it appears that pyric herbivory improves vegetation characteristics reported as critical to prairie-chicken reproduction. Based on our results, we suggest pyric herbivory as a viable management technique to promote prairie-chicken habitat in the southern Great Plains, while still accommodating livestock production

    Effects of pyric herbivory on prairie-chicken (\u3ci\u3eTympanuchus\u3c/i\u3e spp) habitat

    Get PDF
    The reduction and simplification of grasslands has led to the decline of numerous species of grassland fauna, particularly grassland-obligate birds. Prairie-chickens (Tympanuchus spp.) are an example of obligate grassland birds that have declined throughout most of their distribution and are species of conservation concern. Pyric herbivory has been suggested as a land management strategy for enhancing prairie-chicken habitat and stabilizing declining population trends. We assessed differences in vegetation structure created by pyric herbivory compared to fire-only treatments to determine whether pyric herbivory increased habitat heterogeneity for prairie-chickens, spatially or temporally. Our study was performed at four sites in the southern Great Plains, all within the current or historic distribution of either lesser (T. pallidicinctus), greater (T. cupido), or Attwater’s (T. cupido attwateri) prairie-chick-ens. Key vegetation characteristics of grass cover and vegetation height in pyric herbivory and fire-only treatments were within the recommended range of values for prairie-chickens during their distinct life history stages. However, patches managed via pyric herbivory pro-vided approximately 5% more forb cover than fire-only treatments for almost 30 months post-fire. Additionally, pyric herbivory extended the length of time bare ground was present after fires. Pyric herbivory also reduced vegetation height and biomass, with mean vegetation height in pyric herbivory treatments lagging behind fire-only treatments by approximately 15 months. Canopy cover in fire-only treatments exceeded levels recommended for prairie-chicken young within 12 months post-fire. However, canopy cover in pyric herbivory treatments never exceeded the maximum recommended levels. Overall, it appears that pyric herbivory improves vegetation characteristics reported as critical to prairie-chicken reproduction. Based on our results, we suggest pyric herbivory as a viable management technique to promote prairie-chicken habitat in the southern Great Plains, while still accommodating livestock production

    A plea for scale, and why it matters for invasive species management, biodiversity and conservation

    Get PDF
    Invasive species are suspected to be major contributors to biodiversity declines worldwide. Counterintuitively, however, invasive species effects are likely scale dependent and are hypothesized to be positively related to biodiversity at large spatial scales. Past studies investigating the effect of invasion on biodiversity have been mostly conducted at small scales (\u3c100 m2) that cannot represent large dynamic landscapes by design. Therefore, replicated experimental evidence supporting a negative effect of invasive plants on biodiversity is lacking across many landscape types, including large grasslands. We collected data across eight large (333–809 ha) grassland landscapes managed with pyric herbivory—that is the recoupling of fire and grazing—to test how an invasive legume Lespedeza cuneata affected plant and bird communities at spatial grains ranging from 0.1 m2 to \u3e3,000,000 m2. Lespedeza cuneata invasion effects on grassland plant diversity and composition changed with scale, being negative at small spatial grains (0.1 m2) and neutral or positive at large spatial grains (\u3e3,000,000 m2). Lespedeza cuneata abundance did not significantly affect bird diversity at any spatial grain measured. Lespedeza cuneata may negatively affect biodiversity if abundances are greater than those observed in this study. However, previous research suggests that Lespedeza cuneata may not be capable of exceeding 20% canopy cover across large landscapes (\u3e400 ha). Control and eradication strategies can be costly and are fraught with risk. If data do not clearly support a negative Lespedeza cuneata abundance–biodiversity relationship, and if invasion is spatially limited across large landscapes, ongoing control and eradication efforts may be unwarranted and ineffective. Synthesis and applications: Invasive species effects gleaned from small-scale studies may not reliably predict their effects at larger scales. Although we recognize the importance of small-scale studies in potentially isolating individual mechanisms, management strategies based solely on results from small-scale studies of invasion are unlikely to increase or conserve biodiversity across large landscapes. Rather, processes that generate landscape heterogeneity—like pyric herbivory—are probably more important for promoting biodiversity across all scales. Scale is a central problem in ecology, and defining scale in management objectives is essential for effective biodiversity conservation

    Challenges of Brush Management Treatment Effectiveness in Southern Great Plains, United States

    Get PDF
    Woodland expansion is a global challenge documented under varying degrees of disturbance, climate, and land ownership patterns. In North American rangelands, mechanical and chemical brush management practices and prescribed fire are frequently promoted by agencies and used by private landowners to reduce woody plant cover. We assess the distribution of agency-supported cost sharing of brush management (2000−2017) in the southern Great Plains, United States, and evaluate the longevity of treatment application. We test the general expectation that the current brush management paradigm in the southern Great Plains reduces woody plants and conserves rangeland resources at broad scales. This study represents the most comprehensive assessment of treatment longevity following brush management in the southern Great Plains by linking confidential private lands management data to a national inventory program (US Department of Agriculture Natural Resources Conservation Service National Resources Inventory). We observed regional differences in the types of brush management techniques used in cost-sharing programs throughout the study area. Mechanical brush management was the most common practice cost shared in Texas, while a mixture of mechanical and chemical application was most common in Oklahoma. Prescribed fire was most common in Kansas with some areas receiving chemical treatment. Our analysis showed brush management, as implemented, did not reduce tree cover long term and minimally reduced shrub cover. Evidence to support the current brush management paradigm only existed at local site-level scales of analysis (40- to 50-acre area), but treatment effectiveness was short-lived. At regional scales, observed changes in woody plant cover showed little to no overall net reduction from 2000 to 2017. These findings bring into question the philosophy of the current brush management paradigm, its implementation as the default rangeland conservation practice, and its prioritization over alternative practices that prevent new woody plant establishment and enhance resilience of rangelands in the southern Great Plains region

    Bison movements change with weather: Implications for their continued conservation in the Anthropocene

    Get PDF
    Animal movement patterns are affected by complex interactions between biotic and abiotic landscape conditions, and these patterns are being altered by weather variability associated with a changing climate. Some animals, like the American plains bison (Bison bison L.; hereafter, plains bison), are considered keystone species, thus their response to weather variability may alter ecosystem structure and biodiversity patterns. Many movement studies of plains bison and other ungulates have focused on point-pattern analyses (e.g., resource-selection) that have provided information about where these animals move, but information about when or why these animals move is limited. For example, information surrounding the influence of weather on plains bison movement in response to weather is limited but has important implications for their conservation in a changing climate. To explore how movement distance is affected by weather patterns and drought, we utilized 12-min GPS data from two of the largest plains bison herds in North America to model their response to weather and drought parameters using generalized additive mixed models. Distance moved was best predicted by air temperature, wind speed, and rainfall. However, air temperature best explained the variation in distance moved compared to any other single parameter we measured, predicting a 48% decrease in movement rates above 28°C. Moreover, severe drought (as indicated by 25-cm depth soil moisture) better predicted movement distance than moderate drought. The strong influence of weather and drought on plains bison movements observed in our study suggest that shifting climate and weather will likely affect plains bison movement patterns, further complicating conservation efforts for this wide-ranging keystone species. Moreover, changes in plains bison movement patterns may have cascading effects for grassland ecosystem structure, function, and biodiversity. Plains bison and grassland conservation efforts need to be proactive and adaptive when considering the implications of a changing climate on bison movement patterns

    Does the presence of oil and gas infrastructure potentially increase risk of harvest in northern bobwhite?

    Get PDF
    Beyond organisms experiencing direct impacts (mortality) from the presence of anthropogenic features, interactive relationships may exacerbate the effects of anthropogenic disturbance within the context of these features. For example, mortality risk may be affected by the road infrastructure associated with energy development by influencing space use of predators including human hunters. To assess these relationships, we conducted research on northern bobwhite Colinus virginianusacross a hunted and non-hunted area of Beaver River Wildlife Management Area, Oklahoma, using radiotelemetry from 2012–2015. We found that bobwhite mortality risk decreased as the distance from primary roads (m) increased across weeks (hazard ratio [HR] = 1.008, 95% confidence interval [CI] = 1.0003 to 1.0013). The interaction between unit (hunted and non-hunted) and distance from primary roads was not significant (HR = 1.00, 95% CI = 0.999 to 1.001) indicating that hunting pressure was not a likely explanation for the observed decrease in survival related to primary roads. Bobwhite on the hunted unit avoided exposed soil/sparse vegetation ( = -0.01, CI = -0.02 to -0.002) and bare ground ( =-0.01, CI =-0.02 to -0.002) more than bobwhite on the non-hunted unit, however these were weak relationships. No other differences in bobwhite space use were detected related to hunting. Though we were limited to estimating theoretical rather than empirical amounts of hunting pressure during our study, we were unable to detect any negative compounding effects of anthropogenic development and hunting pressure on bobwhite ecology during the hunting season

    Using airborne and DESIS imaging spectroscopy to map plant diversity across the largest contiguous tract of tallgrass prairie on earth

    Get PDF
    Grassland ecosystems are under threat globally, primarily due to land-use and land-cover changes that have adversely affected their biodiversity. Given the negative ecological impacts of biodiversity loss in grasslands, there is an urgent need for developing an operational biodiversity monitoring system that functions in these ecosystems. In this paper, we assessed the capability of airborne and spaceborne imaging spectroscopy (also known as hyperspectral imaging) to capture plant α-diversity in a large naturally-assembled grassland while considering the impact of common management practices, specifically prescribed fire. We collected a robust insitu plant diversity data set, including species composition and percent cover from 2500 sampling points with different burn ages, from recently-burned to transitional and pre-prescribed fire at the Joseph H. Williams Tallgrass Prairie Preserve in Oklahoma, USA. We expressed in-situ plant α-diversity using the first three Hill numbers, including species richness (number of observed species in a plant community), exponential Shannon entropy index (hereafter Shannon diversity; effective number of common species, where species are weighed proportional to their percent cover), and inverse Simpson concentration index (hereafter Simpson diversity; effective number of dominant species, where more weight is given to dominant species) at four different plot sizes, including 60 m × 60 m, 120 m × 120 m, 180 m × 180 m, and 240 m × 240 m. We collected full-range airborne hyperspectral data with fine spatial resolution (1 m) and visible and near-infrared spaceborne hyperspectral data from DESIS sensor with coarse spatial resolution (30 m), and used the spectral diversity hypothesis— i.e., that the variability in spectral data is largely driven by plant diversity—to estimate α-diversity remotely. In recently-burned plots and those at the transitional stage, both airborne and spaceborne data were capable of capturing Simpson diversity—a metric that calculates the effective number of dominant species by emphasizing abundant species and discounting rare species—but not species richness or Shannon diversity. Further, neither airborne nor spaceborne hyperspectral data sets were capable of capturing plant α-diversity of 60 m × 60 m or 120 m × 120 m plots. Based on these results, three main findings emerged: (1) management practices influence grassland biodiversity patterns that can be remotely detected, (2) both fine- and coarse-resolution remotely-sensed data can detect the effective number of dominant species (e.g., Simpson diversity), and (3) attention should be given to site-specific plant diversity field data collection to appropriately interpret remote sensing results. Findings of this study indicate the feasibility of estimating Simpson diversity in naturally-assembled grasslands using forthcoming spaceborne imagers such as National Aeronautics and Space Administration’s Surface Biology and Geology mission

    Thermal patterns constrain diurnal behavior of a ground-dwelling bird

    Get PDF
    Recently, gaining knowledge about thermal refuges for vulnerable species has been a major focal point of ecological studies, and this focus has been heightened by predicted temperature increases associated with global climate change. To better understand how organisms respond to thermal landscapes and extremes, we investigated the thermal ecology of a gallinaceous bird species (northern bobwhite; Colinus virginianus, hereafter bobwhite) during a key life history period. Specifically, our study focused on the brood-rearing period of precocial bobwhite chicks associated with brood-attending adults. We measured site-specific black bulb temperatures (Tbb) and vegetation characteristics across 38 brood tracking days and 68 random landscape sites to assess thermal patterns at scales relevant to broods. We observed that the landscape was thermally heterogeneous, exhibiting variation in Tbb up to 40°C during peak diurnal heating demonstrating a wide array of thermal choices available to broods. At 15:00 h, broods selected thermal refuges that moderated Tbb on average up to 10.4°C more than landscape sites. Moreover, broods exhibited behavioral thermoregulation through reduced movement and by occupying more moderate microclimates that afforded taller vegetation structure during high heat. Modeled climate projections suggest that future Tbb in thermal refuges will approach those currently avoided on the landscape, emphasizing the need for future conservation plans that acknowledge fine scale thermal space in climate change scenarios. These findings underline that studying both abiotic and biotic factors at scales relevant to organisms can increase our understanding of how thermally heterogeneous landscapes provide thermal choices under extreme conditions.Peer reviewedNatural Resource Ecology and Managemen
    corecore