2,714 research outputs found

    Colocalization of F-actin and talin during Fc receptor-mediated phagocytosis in mouse macrophages

    Get PDF
    We have studied the distribution of talin in J774 cells and mouse peritoneal macrophages undergoing Fc receptor-mediated phagocytosis. At early stages of phagocytosis, talin accumulates in the cells' cortical cytoplasm adjacent to the forming phagosome and extends into pseudopods that are encircling the particle. Talin colocalizes with F-actin at these sites. After particle ingestion is completed, F-actin and talin are no longer concentrated adjacent to phagosomes. Thus, talin and F-actin undergo dynamic and coordinate changes in their cytoplasmic location during Fc receptor-mediated phagocytosis

    Geometric optimization of plasmonic nanostructure arrays on MWIR HgCdTe (MCT)

    Get PDF
    Mercury Cadmium Telluride (MCT) is a primary absorber material used in most infrared (IR) detection technologies. Our previous studies show that the optical absorbance profile of MCT in the mid-infrared region can be enhanced by 13% under ambient conditions via integrating periodic Indium Tin Oxide (ITO) nanostructures. Here, we focus on the geometrical parameterization and optimization of ITO nanostructure arrays. We simulate several types of geometries, their corresponding effective absorption profiles, E-field distribution, and optimal geometric parameters. This work may lead to improved light collection and absorption edge engineering, as MCT continues to be the material of choice in IR detection architectures

    An efficient basis set representation for calculating electrons in molecules

    Full text link
    The method of McCurdy, Baertschy, and Rescigno, J. Phys. B, 37, R137 (2004) is generalized to obtain a straightforward, surprisingly accurate, and scalable numerical representation for calculating the electronic wave functions of molecules. It uses a basis set of product sinc functions arrayed on a Cartesian grid, and yields 1 kcal/mol precision for valence transition energies with a grid resolution of approximately 0.1 bohr. The Coulomb matrix elements are replaced with matrix elements obtained from the kinetic energy operator. A resolution-of-the-identity approximation renders the primitive one- and two-electron matrix elements diagonal; in other words, the Coulomb operator is local with respect to the grid indices. The calculation of contracted two-electron matrix elements among orbitals requires only O(N log(N)) multiplication operations, not O(N^4), where N is the number of basis functions; N = n^3 on cubic grids. The representation not only is numerically expedient, but also produces energies and properties superior to those calculated variationally. Absolute energies, absorption cross sections, transition energies, and ionization potentials are reported for one- (He^+, H_2^+ ), two- (H_2, He), ten- (CH_4) and 56-electron (C_8H_8) systems.Comment: Submitted to JC

    Simulating the Biogeochemical and Biogeophysical Impacts of Transient Land Cover Change and Wood Harvest in the Community Climate System Model (CCSM4) from 1850 to 2100

    Get PDF
    This is the publisher's version, also available electronically from http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-11-00256.1.To assess the climate impacts of historical and projected land cover change in the Community Climate System Model, version 4 (CCSM4), new time series of transient Community Land Model, version 4 (CLM4) plant functional type (PFT) and wood harvest parameters have been developed. The new parameters capture the dynamics of the Coupled Model Intercomparison Project phase 5 (CMIP5) land cover change and wood harvest trajectories for the historical period from 1850 to 2005 and for the four representative concentration pathway (RCP) scenarios from 2006 to 2100. Analysis of the biogeochemical impacts of land cover change in CCSM4 reveals that the model produced a historical cumulative land use flux of 127.7 PgC from 1850 to 2005, which is in general agreement with other global estimates of 156 PgC for the same period. The biogeophysical impacts of the transient land cover change parameters were cooling of the near-surface atmosphere over land by −0.1°C, through increased surface albedo and reduced shortwave radiation absorption. When combined with other transient climate forcings, the higher albedo from land cover change was counteracted by decreasing snow albedo from black carbon deposition and high-latitude warming. The future CCSM4 RCP simulations showed that the CLM4 transient PFT parameters can be used to represent a wide range of land cover change scenarios. In the reforestation scenario of RCP 4.5, CCSM4 simulated a drawdown of 67.3 PgC from the atmosphere into the terrestrial ecosystem and product pools. By contrast the RCP 8.5 scenario with deforestation and high wood harvest resulted in the release of 30.3 PgC currently stored in the ecosystem

    Monte Carlo study of non-diffusive relaxation of a transient thermal grating in thin membranes

    Get PDF
    The impact of boundary scattering on non-diffusive thermal relaxation of a transient grating in thin membranes is rigorously analyzed using the multidimensional phononBoltzmann equation. The gray Boltzmann simulation results indicate that approximating models derived from previously reported one-dimensional relaxation model and Fuchs-Sondheimer model fail to describe the thermal relaxation of membranes with thickness comparable with phonon mean free path. Effective thermal conductivities from spectral Boltzmann simulations free of any fitting parameters are shown to agree reasonably well with experimental results. These findings are important for improving our fundamental understanding of non-diffusive thermal transport in membranes and other nanostructures.United States. Dept. of Energy. Office of Science (Solid-State Solar-Thermal Energy Conversion Center Award DE-SC0001299/DE-FG02-09ER46577

    Demographic Patterns and Limitation of Grey Wolves, Canis lupus, in and Near Pukaskwa National Park, Ontario

    Get PDF
    In response to concern regarding the growth and long-term viability of the wolf population in and near Pukaskwa National Park, a study of demographic patterns and limitation of radio-collared wolves (Canis lupus) was completed between 1994 and 1998. The mean annual finite rate of increase (0.96) suggested that population growth of wolves was limited and declining slightly. Small pack sizes, high cumulative mortality, and low reproductive success also suggested a declining population. Two limiting factors, ungulate biomass and human-caused mortality, were examined to determine the importance of each in limiting the population growth of wolves. Ungulate biomass was involved because occurrence of natural-caused mortality was high (9 of 17 wolves) compared with other studies. In addition, consumption rates were low and similar to other studies where starvation and other signs of malnutrition were noted. Further, Moose densities in the study area were low to moderate and below thresholds indicating nutritional stress for wolves. Occurrence of human-caused mortality was high (8 of 17 wolves) suggesting that it was also an important limiting factor, particularly given the low availability of ungulate biomass and reproduction noted in this study. Based on present demographic patterns, ungulate biomass, and human-caused mortality, the wolf population likely will remain at present low densities or continue to decline

    Prenatal development is linked to bronchial reactivity: epidemiological and animal model evidence

    Get PDF
    Chronic cardiorespiratory disease is associated with low birthweight suggesting the importance of the developmental environment. Prenatal factors affecting fetal growth are believed important, but the underlying mechanisms are unknown. The influence of developmental programming on bronchial hyperreactivity is investigated in an animal model and evidence for comparable associations is sought in humans. Pregnant Wistar rats were fed either control or protein-restricted diets throughout pregnancy. Bronchoconstrictor responses were recorded from offspring bronchial segments. Morphometric analysis of paraffin-embedded lung sections was conducted. In a human mother-child cohort ultrasound measurements of fetal growth were related to bronchial hyperreactivity, measured at age six years using methacholine. Protein-restricted rats' offspring demonstrated greater bronchoconstriction than controls. Airway structure was not altered. Children with lesser abdominal circumference growth during 11-19 weeks' gestation had greater bronchial hyperreactivity than those with more rapid abdominal growth. Imbalanced maternal nutrition during pregnancy results in offspring bronchial hyperreactivity. Prenatal environmental influences might play a comparable role in humans
    • …
    corecore