35 research outputs found

    Paired chiral spin liquid with a Fermi surface in S=1 model on the triangular lattice

    Full text link
    Motivated by recent experiments on Ba3NiSb2O9, we investigate possible quantum spin liquid ground states for spin S=1 Heisenberg models on the triangular lattice. We use Variational Monte Carlo techniques to calculate the energies of microscopic spin liquid wave functions where spin is represented by three flavors of fermionic spinon operators. These energies are compared with the energies of various competing three-sublattice ordered states. Our approach shows that the antiferromagnetic Heisenberg model with biquadratic term and single-ion anisotropy does not have a low-temperature spin liquid phase. However, for an SU(3)-invariant model with sufficiently strong ring-exchange terms, we find a paired chiral quantum spin liquid with a Fermi surface of deconfined spinons that is stable against all types of ordering patterns we considered. We discuss the physics of this exotic spin liquid state in relation with the recent experiment and suggest new ways to test this scenario.Comment: 18 pages, 6 figures; replaced with published versio

    Single hole and vortex excitations in the doped Rokhsar-Kivelson quantum dimer model on the triangular lattice

    Full text link
    We consider the doped Rokhsar-Kivelson quantum dimer model on the triangular lattice with one mobile hole (monomer) at the Rokhsar-Kivelson point. The motion of the hole is described by two branches of excitations: the hole may either move with or without a trapped Z2 vortex (vison). We perform a study of the hole dispersion in the limit where the hole hopping amplitude is much smaller than the interdimer interaction. In this limit, the hole without vison moves freely and has a tight-binding spectrum. On the other hand, the hole with a trapped vison is strongly constrained due to interference effects and can only move via higher-order virtual processes.Comment: 4 pages, 4 figures; minor changes, replaced by published versio

    SU(2) approach to the pseudogap phase of high-temperature superconductors: electronic spectral functions

    Full text link
    We use an SU(2) mean-field theory approach with input from variational wavefunctions of the t-J model to study the electronic spectra in the pseudogap phase of cuprates. In our model, the high-temperature state of underdoped cuprates is realized by classical fluctuations of the order parameter between the d-wave superconductor and the staggered-flux state. Spectral functions of the intermediate and the averaged states are computed and analyzed. Our model predicts a photoemission spectrum with an asymmetric gap structure interpolating between the superconducting gap centered at the Fermi energy and the asymmetric staggered-flux gap. This asymmetry of the gap changes sign at the point where the Fermi surface crosses the diagonal (\pi,0)-(0,\pi).Comment: 7 pages, 10 figures; estimate of applicable temperature range corrected and refs. added, ref. to ARPES paper added; minor changes to published versio

    Resonating-valence-bond approaches to high-temperature superconductivity

    Get PDF
    This thesis is devoted to a theoretical study of high-temperature superconductivity from the viewpoint of a doped Mott insulator. To this end, the square-lattice t-J model is analyzed by variational and mean-field approaches. The thesis focuses on the construction of excitations and on spectral properties in the framework of Anderson's concept of resonating-valence-bond wavefunctions. The quantum dimer model as a toy model for the resonating-valence-bond phase of Mott insulators is also explored. In the first part of the thesis, the single-particle Green's functions in the superconducting phase are analyzed using Gutzwiller-projected variational wavefunctions for the t-J model. It is found that the overall spectral weight is reduced by a momentum-dependent renormalization, and that the projection produces a particle-hole asymmetry in the renormalization of the spectral weights. The second part analyzes the Green's functions in the pseudogap phase of the cuprates within an SU(2) mean-field approach where the order parameter fluctuates between the d-wave superconductor and the non-superconducting staggered-flux state. The model predicts a photoemission spectrum with an asymmetric gap structure interpolating between the superconducting gap centered at the Fermi energy and the asymmetric staggered-flux gap. This gap asymmetry changes sign at the "hot-spots" where the Fermi surface crosses the diagonal (0,Ď€)-(Ď€,0). In the last part of the thesis, single hole and vortex excitations in the liquid phase of the triangular-lattice Rokhsar-Kivelson quantum dimer model are considered. It is found that the motion of a hole bound to a topological excitation is strongly constrained due to interference effects

    Competition between spin liquids and valence-bond order in the frustrated spin-1/2 Heisenberg model on the honeycomb lattice

    Get PDF
    Using variational wave functions and Monte Carlo techniques, we study the antiferromagnetic Heisenberg model with first-neighbor J1 and second-neighbor J2 antiferromagnetic couplings on the honeycomb lattice. We perform a systematic comparison of magnetically ordered and nonmagnetic states (spin liquids and valence-bond solids) to obtain the ground-state phase diagram. N\ue9el order is stabilized for small values of the frustrating second-neighbor coupling. Increasing the ratio J2/J1, we find strong evidence for a continuous transition to a nonmagnetic phase at J2/J1 480.23. Close to the transition point, the Gutzwiller-projected uniform resonating valence-bond state gives an excellent approximation to the exact ground-state energy. For 0.23 J2/J1 0.36, a gapless Z2 spin liquid with Dirac nodes competes with a plaquette valence-bond solid. In contrast, the gapped spin liquid considered in previous works has significantly higher variational energy. Although the plaquette valence-bond order is expected to be present as soon as the N\ue9el order melts, this ordered state becomes clearly favored only for J2/J1 0.3. Finally, for 0.36 J2/J1 640.5, a valence-bond solid with columnar order takes over as the ground state, being also lower in energy than the magnetic state with collinear order. We perform a detailed finite-size scaling and standard data collapse analysis, and we discuss the possibility of a deconfined quantum critical point separating the N\ue9el antiferromagnet from the plaquette valence-bond solid

    Quasiparticle spectral weights of Gutzwiller-projected high T_c superconductors

    Full text link
    We analyze the electronic Green's functions in the superconducting ground state of the t-J model using Gutzwiller-projected wave functions, and compare them to the conventional BCS form. Some of the properties of the BCS state are preserved by the projection: the total spectral weight is continuous around the quasiparticle node and approximately constant along the Fermi surface. On the other hand, the overall spectral weight is reduced by the projection with a momentum-dependent renormalization, and the projection produces electron-hole asymmetry in renormalization of the electron and hole spectral weights. The latter asymmetry leads to the bending of the effective Fermi surface which we define as the locus of equal electron and hole spectral weight.Comment: 6 pages, 5 figures; x-labels on Figs. 1 and 2 corrected, footnote on particle number corrected, references adde

    Physical principles underlying the quantum Hall effect

    Get PDF
    In this contribution, we present an introduction to the physical principles underlying the quantum Hall effect. The field theoretic approach to the integral and fractional effect is sketched, with some emphasis on the mechanism of electromagnetic gauge anomaly cancellation by chiral degrees of freedom living on the edge of the sample. Applications of this formalism to the design and theoretical interpretation of interference experiments are outlined.Comment: 20 pages, 8 figures; small corrections, replaced with published versio
    corecore