23,344 research outputs found

    Teleportation of continuous quantum variables

    Get PDF
    Quantum teleportation is analyzed for states of dynamical variables with continuous spectra, in contrast to previous work with discrete (spin) variables. The entanglement fidelity of the scheme is computed, including the roles of finite quantum correlation and nonideal detection efficiency. A protocol is presented for teleporting the wave function of a single mode of the electromagnetic field with high fidelity using squeezed-state entanglement and current experimental capability

    Generalized uncertainty relations: Theory, examples, and Lorentz invariance

    Get PDF
    The quantum-mechanical framework in which observables are associated with Hermitian operators is too narrow to discuss measurements of such important physical quantities as elapsed time or harmonic-oscillator phase. We introduce a broader framework that allows us to derive quantum-mechanical limits on the precision to which a parameter---e.g., elapsed time---may be determined via arbitrary data analysis of arbitrary measurements on NN identically prepared quantum systems. The limits are expressed as generalized Mandelstam-Tamm uncertainty relations, which involve the operator that generates displacements of the parameter---e.g., the Hamiltonian operator in the case of elapsed time. This approach avoids entirely the problem of associating a Hermitian operator with the parameter. We illustrate the general formalism, first, with nonrelativistic uncertainty relations for spatial displacement and momentum, harmonic-oscillator phase and number of quanta, and time and energy and, second, with Lorentz-invariant uncertainty relations involving the displacement and Lorentz-rotation parameters of the Poincar\'e group.Comment: 39 pages of text plus one figure; text formatted in LaTe

    The Effects of Auditor Tenure on Fraud and Its Detection

    Get PDF
    We examine the strategic effects of auditor tenure on the auditor's testing strategy and the manager's inclination to commit fraud. Most empirical studies conclude that longer tenure improves audit quality. Proponents of restricting tenure argue that longer tenure impairs auditor independence and a "fresh look" from a new auditor results in higher audit quality. Validating this argument requires testing whether the observed difference in audit quality between a continuing auditor and a change in auditors is less than the theoretically expected difference in audit quality without impairment. Our findings provide the guidance necessary for developing such tests. Our results show that audit risk (the probability that fraud exists and goes undetected) is lower in both periods for the continuing auditor than with a change in auditors. More importantly, we show that across both periods, expected undetected fraud is lower for the continuing auditor than with a change in auditors

    Addressing LISA Science Analysis Challenges

    Get PDF
    The principal goal of the \emph{LISA Science Analysis Workshop} is to encourage the development and maturation of science analysis technology in preparation for LISA science operations. Exactly because LISA is a pathfinder for a new scientific discipline -- gravitational wave astronomy -- LISA data processing and science analysis methodologies are in their infancy and require considerable maturation if they are to be ready to take advantage of LISA data. Here we offer some thoughts, in anticipation of the LISA Science Analysis Workshop, on analysis research problems that demonstrate the capabilities of different proposed analysis methodologies and, simultaneously, help to push those techniques toward greater maturity. Particular emphasis is placed on formulating questions that can be turned into well-posed problems involving tests run on specific data sets, which can be shared among different groups to enable the comparison of techniques on a well-defined platform.Comment: 7 page

    The Testbed for LISA Analysis Project

    Full text link
    The Testbed for LISA Analysis (TLA) Project aims to facilitate the development, validation and comparison of different methods for LISA science data analysis, by the broad LISA Science Community, to meet the special challenges that LISA poses. It includes a well-defined Simulated LISA Data Product (SLDP), which provides a clean interface between the communities that have developed to model and to analyze the LISA science data stream; a web-based clearinghouse (at ) providing SLDP software libraries, relevant software, papers and other documentation, and a repository for SLDP data sets; a set of mailing lists for communication between and among LISA simulators and LISA science analysts; a problem tracking system for SLDP support; and a program of workshops to allow the burgeoning LISA science community to further refine the SLDP definition, define specific LISA science analysis challenges, and report their results. This note describes the TLA Project, the resources it provides immediately, its future plans, and invites the participation of the broader community in the furtherance of its goals.Comment: 5 pages, no figure

    Optimality of Gaussian Discord

    Get PDF
    In this Letter we exploit the recently-solved conjecture on the bosonic minimum output entropy to show the optimality of Gaussian discord, so that the computation of quantum discord for bipartite Gaussian states can be restricted to local Gaussian measurements. We prove such optimality for a large family of Gaussian states, including all two-mode squeezed thermal states, which are the most typical Gaussian states realized in experiments. Our family also includes other types of Gaussian states and spans their entire set in a suitable limit where they become Choi-matrices of Gaussian channels. As a result, we completely characterize the quantum correlations possessed by some of the most important bosonic states in quantum optics and quantum information.Comment: ReVTEX. 4 pages + 6 pages (Supplemental Material
    • …
    corecore