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In this Letter we exploit the recently solved conjecture on the bosonic minimum output entropy to show
the optimality of Gaussian discord, so that the computation of quantum discord for bipartite Gaussian states
can be restricted to local Gaussian measurements. We prove such optimality for a large family of Gaussian
states, including all two-mode squeezed thermal states, which are the most typical Gaussian states realized
in experiments. Our family also includes other types of Gaussian states and spans their entire set in a
suitable limit where they become Choi matrices of Gaussian channels. As a result, we completely
characterize the quantum correlations possessed by some of the most important bosonic states in quantum

optics and quantum information.
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Quantum correlations represent a fundamental resource
in quantum information and computation [1,2]. If we
restrict the description of a quantum system to pure states,
then quantum entanglement is synonymous with quantum
correlations. However, this is not exactly the case when
general mixed states are considered: Separable mixed
states can still have residual correlations which cannot
be simulated by any classical probability distribution [3,4].
These residual quantum correlations are today quantified
by quantum discord [5].

Quantum discord is defined as the difference between the
total correlations within a quantum state, as measured by
the quantum mutual information, and its classical correla-
tions, corresponding to the maximal randomness which can
be shared by two parties by means of local measurements
and one-way classical communication [6]. This definition
not only provides a more precise characterization of quan-
tum correlations but also has direct application in various
protocols, including quantum state merging [7], remote state
preparation [8], discrimination of unitaries [9], quantum
channel discrimination [10], quantum metrology [11], and
quantum cryptography [12].

For bosonic systems, like the optical modes of the
electromagnetic field, it is therefore crucial to compute
the quantum discord of Gaussian states [13]. Despite these
states being the most common in experimental quantum
optics and the most studied in continuous-variable quantum
information [14], no closed formula is yet known for their
quantum discord. What is computed is an upper bound,
known as Gaussian discord [15,16], which is a simplified
version based on Gaussian detections only. Gaussian discord
has been conjectured to be the actual discord for Gaussian
states, as also supported by recent numerical studies [17,18].

In this Letter, we connect this conjecture on Gaussian
discord with the recently solved conjecture on the bosonic
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minimum output entropy [19], according to which the von
Neumann entropy at the output of a single-mode Gaussian
channel is minimized by a pure Gaussian state at the input
[13]. In particular, this optimal input state is the vacuum,
or any other coherent state, when we consider Gaussian
channels whose action is symmetric in the quadratures
(phase-insensitive), as for instance is the case of lossy or
amplifier channels (besides Ref. [19] see also Ref. [20] for
an alternate proof).

We show that the minimization of the bosonic output
entropy implies the optimality of Gaussian discord for a
large family of Gaussian states. This family includes the
important class of squeezed thermal states, which are all
those states realized by applying two-mode squeezing to a
pair of single-mode thermal states [15]. A key point in our
analysis is showing that these states can always be decom-
posed into an Einstein-Podolsky-Rosen (EPR) state plus the
local action of a phase-insensitive Gaussian channel. Given
such decomposition, we can easily show that heterodyne
detection represents the optimal local measurement for
computing their quantum discord.

More generally, by extending the previous decomposi-
tion to include other forms of local Gaussian channels, we
show that we can generate many other types of bipartite
Gaussian states, for which the optimal local measurement
is Gaussian, given by a (quasi-)projection on single-mode
pure squeezed states. Furthermore, our decomposition
spans the entire set of Gaussian states in a suitable (and
fastly converging) limit where they become Choi matrices
of local Gaussian channels.

As aresult of our study, we are now able to compute the
actual unrestricted discord of a large portion of Gaussian
states, paving the way for a complete and precise charac-
terization of the most fundamental quantum correlations
possessed by bosonic systems.
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Quantum discord and its Gaussian formulation.—
In classical information theory, the mutual information
between two random variables, X and Y, can be written as
I(X,Y) =H(X)— H(X|Y), where H(X) is the Shannon
entropy of variable X, and H(X|Y) = H(X,Y) - H(Y) is
its conditional Shannon entropy. This notion has several
inequivalent generalizations in quantum information theory
[5], where the two variables are replaced by two quantum
systems, A and B, in a joint quantum state p,p.

A first generalization is given by the quantum mutual
information [2], defined as I(A, B) = S(A) — S(A|B), where
S(A) = =Tr(pslogyp,) is the von Neumann entropy of
system A, in the reduced state p4, = Trg(p4p), and S(A|B) =
S(A, B) — S(B) is the conditional von Neumann entropy (to
be computed from the joint state p,z and the other reduced
state pp). The quantum mutual information is a measure of
the total correlations between the two quantum systems.

A second generalization is given by

C(A|B) = S(A) = Smin(A[B), (1)

where the conditional term S,,;,(A|B) is the von Neumann
entropy of system A minimized over all possible measure-
ments on system B, generally described as positive operator
valued measures (POVMs) My = {M} (in particular, it is
sufficient to consider rank-1 POVMs [5]). Mathematically,
this conditional term is written as

Suin(AIB)s=inf (AL M), @
where [21]
S(A‘MB):ZPkS(/’A\k)v (3)
k

with p, = Tr(pspM;) the probability of outcome k, and
pa = Px'Trg(pagMy) the conditional state of A.

The entropic quantity C(A|B) quantifies the classical
correlations in the joint state p,p, being the maximum
amount of common randomness which can be extracted by
local measurements and one-way classical communication
[6]. Quantum discord is then defined as the difference
between the total and these classical correlations [3-5]

D(A|B)=I(A, B) — C(A|B) = Suin(A|B) — S(A[B). (4)

When the two systems A and B are bosonic modes, we
can consider their Gaussian discord Ds(A|B) > D(A|B),
where the minimization of the conditional term S,;,(A|B)
in Eq. (2) is restricted to Gaussian POVMs. Thanks to
this restriction, Gaussian discord is easy to compute for
two-mode Gaussian states [15,16]. Furthermore, as we
have already mentioned, Gaussian discord is conjectured
to be optimal for these states, in the sense that it
would represent their unrestricted quantum discord, i.e.,
Dg;(A|B) = D(A|B). This conjecture is supported by

numerical studies [17,18] and known to be true for a very
limited set of Gaussian states p 45, namely those which can
be purified into a three-mode Gaussian state ®,pz Sym-
metric in the AE subsystem [16,22].

Normal forms, two-mode squeezed thermal states, and
their decomposition.—Since quantum discord and classical
correlations are entropic quantities, they are invariant under
local unitaries. This means that we may apply displacements
to yield a zero mean value, and local Gaussian unitaries to
reduce the covariance matrix (CM) into normal form [13].
Thus, without loss of generality, quantum discord can be
studied for zero-mean Gaussian states p,p with CM

: /

Van = <diagczi, ) dlaglg? ! > =Viabec) ©)
where I = diag(1, 1) and the parameters satisfy bona fide
conditions imposed by the uncertainty principle [25-27].

For simplicity, we start from the most typical zero-mean
Gaussian states, i.e., two-mode squeezed thermal states.
These states have CMs of the form V3 = V(a,b, ¢, —¢) with
bona fide conditions a,b > 1 and ¢*> <ab—1—|a - b|.
As we prove in Ref. [28] and depict in Fig. 1, these states
can always be decomposed as pyp = (€ ® Z)(0,5), where
£ is a phase-insensitive Gaussian channel (details below),
7 is the identity channel, and o5 is an EPR state with CM

( bl Vb?— 1C>
A\ ,

Vb? - 1C bl ©)

where

(% k)b o

At the level of the second order moments, a phase-
insensitive Gaussian channel £ performs the transformation
Vs = Vag = (K@) V 3 (KT®I) + (N@O), with trans-
mission matrix K = \/EI and noise matrix N = 1, where

FIG. 1 (color online). State decomposition. A two-mode
squeezed thermal state p,p can always be decomposed into an
EPR state 0,5 plus the local application of a phase-insensitive
Gaussian channel £. Remote preparation (red elements, see next
section). A local measurement M g on mode B generates a remote
ensemble A on the output mode A. There will be another
ensemble P generated on the input mode a before the channel.
This input ensemble will be made by Gaussianly modulated
coherent states if My is heterodyne detection.
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7> 0andn > |1 — z|. In particular, this is a “lossy channel”
for transmissivity z € [0, 1] and thermal noise > 1 — 1,
an ‘“additive-noise channel” for 7 =1 and # >0, or an
“amplifier channel” for z > 1 and n > 7 — 1. (These are
the most important canonical forms of a single-mode
Gaussian channel, see Refs. [13,28] for this classification.)
As a result, the CM of a two-mode squeezed thermal state
Vag = V(a,b,c,—c) can be expressed in the equivalent
form

for some choice of 7 > 0 and 5 > |1 — 7.

Remote state preparation and connection with the
bosonic minimum output entropy.—As depicted in Fig. 1,
the action of a local POVM My = {M;} on mode B
generates a remote ensemble of states P on the input mode
a, and a corresponding ensemble .4 on the output mode A.
With probability p, = Tr(c,zM;), we have a conditional
input state o, = Py Trg(c,sM;) € P and its correspond-
ing channel output p,; = E(o,) € A.

Assuming heterodyne detection Mp = hetp, the input
ensemble P consists of coherent states o, = |ay) (o]
whose complex amplitudes a; are Gaussianly distributed
(see Ref. [28] for more details on the remote preparation
of Gaussian states). As a result, the output ensemble A will
be composed of Gaussian states pa = E(|ai)(a|) with
Gaussianly modulated first moments and CM equal
to (r+n)L

The output entropy associated with the heterodyne
detection is equal to the average entropy of the output
ensemble A, i.e.,

S(Alhety) = / PkpSE(adial).  (9)

Since entropy is invariant under displacements, we may
write [32] S[E(|ag) (ax|)] = S[E(|0)(0])] and therefore

S(Afhetg) = SIE(0)(O))] = h(z +n), (10)

x+1 x-1
log, > T3

_x+1 o X —
= [25)

h(x): 5

(11)

At this point we can exploit the solved conjecture on the
bosonic minimum output entropy, which states that the
vacuum (or any other coherent state) minimizes the output
entropy of the phase-insensitive Gaussian channel £ among
all possible input states [19,20]

SIE(10)(0D] = infS[E(p)]. (12)

As a result, we may write

S(Alhety) = infS[E(p)]

<infS(AIMp) = Swin(AlB).  (13)

where the inequality comes from the fact that any Mg,
with input ensemble P = {py, o «} and output ensemble
A = {pi, paj}, must satisty

S(AIMp) = Zpk5<pA\k) > ing(PA\k)

= i%fS[S(aaM)] > iI/}fS[S(p)]. (14)

Thus, there is a Gaussian POVM (heterodyne detection)
which is optimal for the minimization of the output entropy
S(A|Mgp). This is equivalent to saying that the Gaussian
discord of the Gaussian state p,p is optimal, i.e., equal to
its actual discord. Its calculation is therefore easy, since
Smin(A|B) = h(z + 1), leading to

D(A|B) = h(b) = h(v-) = h(vy) + h(z+1n),  (15)

where {v } is the symplectic spectrum of V5, which can
be easily computed [13] from Eq. (8).

Extending the family of Gaussian states.—Here we extend
the previous derivation to include other Gaussian states.
We first generalize the local Gaussian POVM M, whose
element M; becomes a quasiprojector on the squeezed
state |k, u) [13] with variable amplitude k but fixed CM
V() = diag(u,u™"), where u > 0. This measurement
M (u) corresponds to a heterodyne detection for u = 1,
and becomes a homodyne detection for u — 0 or u — +oo0.
By applying Mp(u) to an EPR state 6,5 with variance b
as in Eq. (6), we generate an ensemble P of amplitude-
modulated squeezed states with CM  V(r), where
r = (1+ ub)(u + b)~". The value of this squeezing ranges
from r = b~! to r = b, extremes which are achieved by the
two homodyne detectors (see Ref. [28] for more details).

We may now ‘“rectify” the ensemble P by applying the
antisqueezing operator [13] 3'_1(1") which transforms its
states into coherent states (see Fig. 2). In this way we are
sure that optimal states are fed into the Gaussian channel &,

FIG. 2 (color online). General decomposition. We consider
Gaussian states p,p Which can be decomposed into an EPR state
o,p by locally applying a Gaussian channel £ plus input-output
squeezing operators. Here the local detection M is a quasipro-
jection onto squeezed states, so that the input ensemble P is
composed of amplitude-modulated squeezed states.
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whose output entropy is therefore minimized. Furthermore,
this output entropy does not change if we apply another
squeezing operator S(&), with a suitable & putting the
Gaussian state p,p into normal form. Thus the optimality
of Gaussian discord is proven for any Gaussian state which
is decomposable into an EPR state as

A

pan = (S8 ®T)(04p).  Silp)=8(x)pS"(x). (16)
with optimal detection given by the Gaussian Mg(u).

The second generalization consists of extending the
Gaussian channel £ to include negative transmissivities
7 <0, where the channel describes the conjugate of an
amplifier, which is another Gaussian channel (phase
sensitive) whose output entropy is minimized by coherent
states at the input [19,20]. We can then consider an
extended Gaussian channel £ with arbitrary 7 € R and
n > |1 —z|, which is described by the matrices K =
V/|7|diag[1,sgn(z)] and N = 51. Thus, the optimality of
Gaussian discord is proven for all Gaussian states pyp
decomposable as in Eq. (16) with £ being such an extended
channel. As we show in Ref. [28], these states have
CMs in the normal-form V(a, b, ¢, ¢’), where

O(r)==+/nr + |7|b, (17)
¢ = +/Iel(®? - oG /0(r). (18)

a=0(r)o(r ),

¢ = Fsgnld\ /el (0 - DO /OG). (19)

with z €R, n> |1 — 7| and r € [b~!, b]. Here the sign
ambiguity comes from the type of EPR state considered
in the decomposition, whose CM in Eq. (6) is generally
defined with C = +diag(1l,—1). Also note that negative
transmissivities allow us to include states with cc¢’ > 0.

For arbitrary fixed values of ¢ >1 and b>1, we
generate all accessible values of the correlation parameters
¢ and ¢’ by exploiting the remaining degrees of freedom
in the parameters z, # and r. As shown in the numerical
investigation of Fig. 3, our family represents a wide portion
of all Gaussian states. It includes all states whose CMs have
the form V(a, b, ¢, ¢') with |¢| = |¢/|, corresponding to the
bisectors of the correlation plane (¢, ¢’). Furthermore, for
increasing b, our family tends to invade the entire Gaussian
set very quickly. This set is completely filled for b — +o0,
where the EPR state 6,5 becomes maximally entangled
and the Gaussian state p,z becomes the Choi matrix of the
Gaussian channel S:£S;".

By increasing the entanglement in the EPR state, we
increase the amount of squeezing r that we can generate
in the input ensemble P. The effect of this squeezing is to
include output states where |c| and |¢’| are very different, as
also evident from the r dependence in Egs. (18) and (19). In
particular, in the limit of b — +oco0, homodyne detectors

(a=b=2) (a=10, b=2)

FIG. 3. For given values of a and b, the correlation parameters ¢
and ¢’ can only take a restricted range of physical values
corresponding to the delimited regions in the panels. Within
these regions, the darker points are members of our Gaussian
family. Plots are created by randomly testing 5 x 10° points.

generate infinite squeezing in P and we approach all the
exotic states on the axes of the plane, for which one of the
correlation parameters is zero (cc¢’ = 0).

Conclusion and discussion.—In this Letter, we have
shown that the validity of the bosonic minimum output
entropy conjecture implies the optimality of Gaussian
discord for a large family of Gaussian states, decomposable
into EPR states subject to local Gaussian channels. In
particular, this family includes the class of two-mode
squeezed thermal states [15]. From this point of view,
our work completely characterizes the quantum correla-
tions possessed by the most typical states in continuous
variable quantum information and experimental quantum
optics. The exact size of these quantum correlations, i.e.,
their unconstrained quantum discord, can now be computed
efficiently (note that computing discord is nondeterministic
polynomial-time complete in the general case [33]).

We have shown that we can rapidly fill the entire set of
Gaussian states by increasing their parameter b, i.e., the
thermal variance in the mode under detection. The reason is
because this parameter corresponds to the variance of the
EPR state involved in the decomposition. By increasing
this parameter, we increase the EPR entanglement and
therefore the amount of squeezing that we can remotely
generate at the input of the Gaussian channel.

We could further improve our results if an energy-
constrained version of the entropy conjecture were proven
for the “pathological” canonical forms [13,34,35]. In fact,
there exist highly phase-sensitive Gaussian channels which
completely destroy the correlations in only one of the
quadratures, therefore being particularly suitable to decom-
pose exotic Gaussian states with c¢¢’ = 0. Unfortunately,
no finite-energy state is known to be optimal for the
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minimization of the output entropy of these channels. If such
a state were Gaussian, then it could be prepared with a
limited amount of squeezing and we would span the entire
set of Gaussian states more straightforwardly.

Finally, we remark that the complete characterization of
the quantum correlations possessed by Gaussian states is
important not only in quantum information and quantum
optics (e.g., for problems of quantum metrology), but also
in other fields. These include condensed matter physics
(e.g., Bose-Einstein condensates), solid-state physics, rela-
tivistic quantum field theory (where Gaussian states arise
from Bogoliubov transformations, e.g., in the Unruh effect
or the Hawking radiation), statistical mechanics, and
foundations of quantum mechanics.
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