359 research outputs found

    Optimisation of quantitative magnetisation transfer (QMT) MRI to study restricted protons in the living human brain

    Get PDF
    Magnetisation Transfer (MT) imaging exploits magnetisation exchange between 'free' protons and 'restricted' protons attached to macromolecules in biological tissue, to indirectly provide access to the restricted protons, which are invisible using conventional MR imaging techniques. The Magnetisation Transfer Ratio (MTR) is calculated from a pair of images with different MT "weightings", however it reflects a complex combination of biological and acquisition dependent factors. Quantitative MT (qMT) imaging allows the examination of fundamental parameters underlying the MT exchange process independently of sequence details. The effect of B errors on MTR measurements was investigated, both theoretically and experimentally, and a method for correcting for B errors was proposed, based on the collection of a B map in addition to MTR data. The temperature dependence of many quantitative MR properties may cause systematic errors in phantom Quality Assurance (QA) measurements, which could have an impact on the interpretation of quantitative changes observed in long-term clinical studies. Many traditional thermometry methods are unsuitable for use in an MRI scanner. Using localised 1H-MRS acquisition sequences routinely available on clinical MRI scanners, and commonly available analysis packages, internal thermometry in phantoms using DSS (sodium 3-(trimethylsilyl)propane-1-sulphonate)) as a chemical shift reference was shown to be realistic, with a minimum detectable temperature difference of 100 ( 20) mK. The qMT acquisition parameters (combinations of MT pulse amplitude and offset frequency) were optimised, via the minimisation of the Cramer-Rao Minimum Variance Bound (CRMVB). Compared to a conventional acquisition, the optimisation enables less data to be acquired, reducing acquisition time without compromising uncertainties in estimated parameters. Alternatively, for the same number of MT-weighted data points, the parameter map noise could be reduced. This analytical approach was verified numerically, using Monte Carlo simulations, and experimentally, and optimised acquisition schemes were shown to be applicable to a range of brain tissues

    Regional patterns of grey matter atrophy and magnetisation transfer ratio abnormalities in multiple sclerosis clinical subgroups: A voxel-based analysis study.

    Get PDF
    In multiple sclerosis (MS), demyelination and neuro-axonal loss occur in the brain grey matter (GM). We used magnetic resonance imaging (MRI) measures of GM magnetisation transfer ratio (MTR) and volume to assess the regional localisation of reduced MTR (reflecting demyelination) and atrophy (reflecting neuro-axonal loss) in relapsing-remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS)

    Grey and White Matter Magnetisation Transfer Ratio Measurements in the Lumbosacral Enlargement: A Pilot In Vivo Study at 3T

    Get PDF
    Magnetisation transfer (MT) imaging of the central nervous system has provided further insight into the pathophysiology of neurological disease. However, the use of this method to study the lower spinal cord has been technically challenging, despite the important role of this region, not only for motor control of the lower limbs, but also for the neural control of lower urinary tract, sexual and bowel functions. In this study, the feasibility of obtaining reliable grey matter (GM) and white matter (WM) magnetisation transfer ratio (MTR) measurements within the lumbosacral enlargement (LSE) was investigated in ten healthy volunteers using a clinical 3T MRI system. The mean cross-sectional area of the LSE (LSE-CSA) and the mean GM area (LSE-GM-CSA) were first obtained by means of image segmentation and tissue-specific (i.e. WM and GM) MTR measurements within the LSE were subsequently obtained. The reproducibility of the segmentation method and MTR measurements was assessed from repeated measurements and their % coefficient of variation (%COV). Mean (± SD) LSE-CSA across 10 healthy subjects was 59.3 (± 8.4) mm2 and LSE-GM-CSA was 17.0 (± 3.1) mm2. The mean intra- and inter-rater % COV for measuring the LSE-CSA were 0.8% and 2.3%, respectively and for the LSE-GM-CSA were 3.8% and 5.4%, respectively. Mean (± SD) WM-MTR was 43.2 (± 4.4) and GM-MTR was 40.9 (± 4.3). The mean scan-rescan % COV for measuring WM-MTR was 4.6% and for GM-MTR was 3.8%. Using a paired t-test, a statistically significant difference was identified between WM-MTR and GM-MTR in the LSE (p<0.0001). This pilot study has shown that it is possible to obtain reliable tissue-specific MTR measurements within the LSE using a clinical MR system at 3T. The MTR acquisition and analysis protocol presented in this study can be used in future investigations of intrinsic spinal cord diseases that affect the LSE

    ZOOM or Non-ZOOM? Assessing spinal cord diffusion tensor imaging protocols for multi-centre studies

    Get PDF
    The purpose of this study was to develop and evaluate two spinal cord (SC) diffusion tensor imaging (DTI) protocols, implemented at multiple sites (using scanners from two different manufacturers), one available on any clinical scanner, and one using more advanced options currently available in the research setting, and to use an automated processing method for unbiased quantification. DTI parameters are sensitive to changes in the diseased SC. However, imaging the cord can be technically challenging due to various factors including its small size, patient-related and physiological motion, and field inhomogeneities. Rapid acquisition sequences such as Echo Planar Imaging (EPI) are desirable but may suffer from image distortions. We present a multi-centre comparison of two acquisition protocols implemented on scanners from two different vendors (Siemens and Philips), one using a reduced field-of-view (rFOV) EPI sequence, and one only using options available on standard clinical scanners such as outer volume suppression (OVS). Automatic analysis was performed with the Spinal Cord Toolbox for unbiased and reproducible quantification of DTI metrics in the white matter. Images acquired using the rFOV sequence appear less distorted than those acquired using OVS alone. SC DTI parameter values obtained using both sequences at all sites were consistent with previous measurements made at 3T. For the same scanner manufacturer, DTI parameter inter-site SDs were smaller for the rFOV sequence compared to the OVS sequence. The higher inter-site reproducibility (for the same manufacturer and acquisition details, i.e. ZOOM data acquired at the two Philips sites) of rFOV compared to the OVS sequence supports the idea that making research options such as rFOV more widely available would improve accuracy of measurements obtained in multi-centre clinical trials. Future multi-centre studies should also aim to match the rFOV technique and signal-to-noise ratios in all sequences from different manufacturers/sites in order to avoid any bias in measured DTI parameters and ensure similar sensitivity to pathological changes

    Blood Oxygenation Level-Dependent Response to Multiple Grip Forces in Multiple Sclerosis: Going Beyond the Main Effect of Movement in Brodmann Area 4a and 4p

    Get PDF
    This study highlights the importance of looking beyond the main effect of movement to study alterations in functional response in the presence of central nervous system pathologies such as multiple sclerosis (MS). Data show that MS selectively affects regional BOLD (blood oxygenation level dependent) responses to variable grip forces (GF). It is known that the anterior and posterior BA 4 areas (BA 4a and BA 4p) are anatomically and functionally distinct. It has also been shown in healthy volunteers that there are linear (first order, typical of BA 4a) and nonlinear (second to fourth order, typical of BA 4p) BOLD responses to different levels of GF applied during a dynamic motor paradigm. After modeling the BOLD response with a polynomial expansion of the applied GFs, the particular case of BA 4a and BA 4p were investigated in healthy volunteers (HV) and MS subjects. The main effect of movement (zeroth order) analysis showed that the BOLD signal is greater in MS compared with healthy volunteers within both BA 4 subregions. At higher order, BOLD-GF responses were similar in BA 4a but showed a marked alteration in BA 4p of MS subjects, with those with greatest disability showing the greatest deviations from the healthy response profile. Therefore, the different behaviors in HV and MS could only be uncovered through a polynomial analysis looking beyond the main effect of movement into the two BA 4 subregions. Future studies will investigate the source of this pathophysiology, combining the present fMRI paradigm with blood perfusion and nonlinear neuronal response analysis

    Outer and inner cortical MTR abnormalities observed in clinically isolated syndromes

    Get PDF

    Fast and reproducible in vivo T1 mapping of the human cervical spinal cord

    Get PDF
    PURPOSE: To develop a fast and robust method for measuring T1 in the whole cervical spinal cord in vivo, and to assess its reproducibility. METHODS: A spatially nonselective adiabatic inversion pulse is combined with zonally oblique-magnified multislice echo-planar imaging to produce a reduced field-of-view inversion-recovery echo-planar imaging protocol. Multi- inversion time data are obtained by cycling slice order throughout sequence repetitions. Measurement of T1 is performed using 12 inversion times for a total protocol duration of 7 min. Reproducibility of regional T1 estimates is assessed in a scan-rescan experiment on five heathy subjects. RESULTS: Regional mean (standard deviation) T1 was: 1108.5 (±77.2) ms for left lateral column, 1110.1 (±83.2) ms for right lateral column, 1150.4 (±102.6) ms for dorsal column, and 1136.4 (±90.8) ms for gray matter. Regional T1 estimates showed good correlation between sessions (Pearson correlation coefficient = 0.89 (P value < 0.01); mean difference = 2 ms, 95% confidence interval ± 20 ms); and high reproducibility (intersession coefficient of variation approximately 1% in all the regions considered, intraclass correlation coefficient = 0.88 (P value < 0.01, confidence interval 0.71-0.95)). CONCLUSIONS: T1 estimates in the cervical spinal cord are reproducible using inversion-recovery zonally oblique-magnified multislice echo-planar imaging. The short acquisition time and large coverage of this method paves the way for accurate T1 mapping for various spinal cord pathologies. Magn Reson Med, 2017. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

    Memory reorganization following anterior temporal lobe resection: a longitudinal functional MRI study

    Get PDF
    Anterior temporal lobe resection controls seizures in 50-60% of patients with intractable temporal lobe epilepsy but may impair memory function, typically verbal memory following left, and visual memory following right anterior temporal lobe resection. Functional reorganization can occur within the ipsilateral and contralateral hemispheres. We investigated the reorganization of memory function in patients with temporal lobe epilepsy before and after left or right anterior temporal lobe resection and the efficiency of postoperative memory networks. We studied 46 patients with unilateral medial temporal lobe epilepsy (25/26 left hippocampal sclerosis, 16/20 right hippocampal sclerosis) before and after anterior temporal lobe resection on a 3 T General Electric magnetic resonance imaging scanner. All subjects had neuropsychological testing and performed a functional magnetic resonance imaging memory encoding paradigm for words, pictures and faces, testing verbal and visual memory in a single scanning session, preoperatively and again 4 months after surgery. Event-related analysis revealed that patients with left temporal lobe epilepsy had greater activation in the left posterior medial temporal lobe when successfully encoding words postoperatively than preoperatively. Greater pre- than postoperative activation in the ipsilateral posterior medial temporal lobe for encoding words correlated with better verbal memory outcome after left anterior temporal lobe resection. In contrast, greater postoperative than preoperative activation in the ipsilateral posterior medial temporal lobe correlated with worse postoperative verbal memory performance. These postoperative effects were not observed for visual memory function after right anterior temporal lobe resection. Our findings provide evidence for effective preoperative reorganization of verbal memory function to the ipsilateral posterior medial temporal lobe due to the underlying disease, suggesting that it is the capacity of the posterior remnant of the ipsilateral hippocampus rather than the functional reserve of the contralateral hippocampus that is important for maintaining verbal memory function after anterior temporal lobe resection. Early postoperative reorganization to ipsilateral posterior or contralateral medial temporal lobe structures does not underpin better performance. Additionally our results suggest that visual memory function in right temporal lobe epilepsy is affected differently by right anterior temporal lobe resection than verbal memory in left temporal lobe epilepsy

    Imaging outcomes for trials of remyelination in multiple sclerosis.

    Get PDF
    Trials of potential neuroreparative agents are becoming more important in the spectrum of multiple sclerosis research. Appropriate imaging outcomes are required that are feasible from a time and practicality point of view, as well as being sensitive and specific to myelin, while also being reproducible and clinically meaningful. Conventional MRI sequences have limited specificity for myelination. We evaluate the imaging modalities which are potentially more specific to myelin content in vivo, such as magnetisation transfer ratio (MTR), restricted proton fraction f (from quantitative magnetisation transfer measurements), myelin water fraction and diffusion tensor imaging (DTI) metrics, in addition to positron emission tomography (PET) imaging. Although most imaging applications to date have focused on the brain, we also consider measures with the potential to detect remyelination in the spinal cord and in the optic nerve. At present, MTR and DTI measures probably offer the most realistic and feasible outcome measures for such trials, especially in the brain. However, no one measure currently demonstrates sufficiently high sensitivity or specificity to myelin, or correlation with clinical features, and it should be useful to employ more than one outcome to maximise understanding and interpretation of findings with these sequences. PET may be less feasible for current and near-future trials, but is a promising technique because of its specificity. In the optic nerve, visual evoked potentials can indicate demyelination and should be correlated with an imaging outcome (such as optic nerve MTR), as well as clinical measures

    Feasibility of in vivo multi-parametric quantitative magnetic resonance imaging of the healthy sciatic nerve with a unified signal readout protocol

    Get PDF
    Magnetic resonance neurography (MRN) has been used successfully over the years to investigate the peripheral nervous system (PNS) because it allows early detection and precise localisation of neural tissue damage. However, studies demonstrating the feasibility of combining MRN with multi-parametric quantitative magnetic resonance imaging (qMRI) methods, which provide more specific information related to nerve tissue composition and microstructural organisation, can be invaluable. The translation of emerging qMRI methods previously validated in the central nervous system to the PNS offers real potential to characterise in patients in vivo the underlying pathophysiological mechanisms involved in a plethora of conditions of the PNS. The aim of this study was to assess the feasibility of combining MRN with qMRI to measure diffusion, magnetisation transfer and relaxation properties of the healthy sciatic nerve in vivo using a unified signal readout protocol. The reproducibility of the multi-parametric qMRI protocol as well as normative qMRI measures in the healthy sciatic nerve are reported. The findings presented herein pave the way to the practical implementation of joint MRN-qMRI in future studies of pathological conditions affecting the PNS
    • …
    corecore