134 research outputs found

    Estimation in the partially observed stochastic Morris-Lecar neuronal model with particle filter and stochastic approximation methods

    Get PDF
    Parameter estimation in multidimensional diffusion models with only one coordinate observed is highly relevant in many biological applications, but a statistically difficult problem. In neuroscience, the membrane potential evolution in single neurons can be measured at high frequency, but biophysical realistic models have to include the unobserved dynamics of ion channels. One such model is the stochastic Morris-Lecar model, defined by a nonlinear two-dimensional stochastic differential equation. The coordinates are coupled, that is, the unobserved coordinate is nonautonomous, the model exhibits oscillations to mimic the spiking behavior, which means it is not of gradient-type, and the measurement noise from intracellular recordings is typically negligible. Therefore, the hidden Markov model framework is degenerate, and available methods break down. The main contributions of this paper are an approach to estimate in this ill-posed situation and nonasymptotic convergence results for the method. Specifically, we propose a sequential Monte Carlo particle filter algorithm to impute the unobserved coordinate, and then estimate parameters maximizing a pseudo-likelihood through a stochastic version of the Expectation-Maximization algorithm. It turns out that even the rate scaling parameter governing the opening and closing of ion channels of the unobserved coordinate can be reasonably estimated. An experimental data set of intracellular recordings of the membrane potential of a spinal motoneuron of a red-eared turtle is analyzed, and the performance is further evaluated in a simulation study.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS729 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Extension of the SAEM algorithm for nonlinear mixed models with two levels of random effects

    Get PDF
    This article focuses on parameter estimation of multi-levels nonlinear mixed effects models (MNLMEMs). These models are used to analyze data presenting multiple hierarchical levels of grouping (cluster data, clinical trials with several observation periods,...). The variability of the individual parameters of the regression function is thus decomposed as a between-sub ject variability and higher levels of variability (for example within-sub ject variability). We propose maximum likelihood estimates of parameters of those MNLMEMs with two levels of random effects, using an extension of the SAEM-MCMC algorithm. The extended SAEM algorithm is split into an explicit direct EM algorithm and a stochastic EM part. Compared to the original algorithm, additional sufficient statistics have to be approximated by relying on the conditional distribution of the second level of random effects. This estimation method is evaluated on pharmacokinetic cross-over simulated trials, mimicking theophyllin concentration data. Results obtained on those datasets with either the SAEM algorithm or the FOCE algorithm (implemented in the nlme function of R software) are compared: biases and RMSEs of almost all the SAEM estimates are smaller than the FOCE ones. Finally, we apply the extended SAEM algorithm to analyze the pharmacokinetic interaction of tenofovir on atazanavir, a novel protease inhibitor, from the ANRS 107-Puzzle 2 study. A significant decrease of the area under the curve of atazanavir is found in patients receiving both treatments

    Parametric estimation of complex mixed models based on meta-model approach

    Full text link
    Complex biological processes are usually experimented along time among a collection of individuals. Longitudinal data are then available and the statistical challenge is to better understand the underlying biological mechanisms. The standard statistical approach is mixed-effects model, with regression functions that are now highly-developed to describe precisely the biological processes (solutions of multi-dimensional ordinary differential equations or of partial differential equation). When there is no analytical solution, a classical estimation approach relies on the coupling of a stochastic version of the EM algorithm (SAEM) with a MCMC algorithm. This procedure needs many evaluations of the regression function which is clearly prohibitive when a time-consuming solver is used for computing it. In this work a meta-model relying on a Gaussian process emulator is proposed to replace this regression function. The new source of uncertainty due to this approximation can be incorporated in the model which leads to what is called a mixed meta-model. A control on the distance between the maximum likelihood estimates in this mixed meta-model and the maximum likelihood estimates obtained with the exact mixed model is guaranteed. Eventually, numerical simulations are performed to illustrate the efficiency of this approach

    Parameter estimation and treatment optimization in a stochastic model for immunotherapy of cancer

    Full text link
    Adoptive Cell Transfer therapy of cancer is currently in full development and mathematical modeling is playing a critical role in this area. We study a stochastic model developed by Baar et al. in 2015 for modeling immunotherapy against melanoma skin cancer. First, we estimate the parameters of the deterministic limit of the model based on biological data of tumor growth in mice. A Nonlinear Mixed Effects Model is estimated by the Stochastic Approximation Expectation Maximization algorithm. With the estimated parameters, we head back to the stochastic model and calculate the probability that the T cells all get exhausted during the treatment. We show that for some relevant parameter values, an early relapse is due to stochastic fluctuations (complete T cells exhaustion) with a non negligible probability. Then, focusing on the relapse related to the T cell exhaustion, we propose to optimize the treatment plan (treatment doses and restimulation times) by minimizing the T cell exhaustion probability in the parameter estimation ranges.Comment: major reorganisation of the paper and the reformulation of many substantial part

    Parametric inference for mixed models defined by stochastic differential equations

    Get PDF
    International audienceNon-linear mixed models defined by stochastic differential equations (SDEs) are consid- ered: the parameters of the diffusion process are random variables and vary among the individuals. A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is proposed. This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved using latent auxiliary data introduced to complete the diffusion process between each pair of measure- ment instants. A tuned hybrid Gibbs algorithm based on conditional Brownian bridges simulations of the unobserved process paths is included in this algorithm. The convergence is proved and the error induced on the likelihood by the Euler-Maruyama approximation is bounded as a function of the step size of the approximation. Results of a pharmacokinetic simulation study illustrate the accuracy of this estimation method. The analysis of the Theophyllin real dataset illustrates the relevance of the SDE approach relative to the deterministic approach

    Estimation of parameters in incomplete data models defined by dynamical systems.

    Get PDF
    International audienceParametric incomplete data models defined by ordinary differential equa- tions (ODEs) are widely used in biostatistics to describe biological processes accurately. Their parameters are estimated on approximate models, whose regression functions are evaluated by a numerical integration method. Ac- curate and efficient estimations of these parameters are critical issues. This paper proposes parameter estimation methods involving either a stochas- tic approximation EM algorithm (SAEM) in the maximum likelihood es- timation, or a Gibbs sampler in the Bayesian approach. Both algorithms involve the simulation of non-observed data with conditional distributions using Hastings-Metropolis (H-M) algorithms. A modified H-M algorithm, including an original Local Linearization scheme to solve the ODEs, is pro- posed to reduce the computational time significantly. The convergence on the approximate model of all these algorithms is proved. The errors induced by the numerical solving method on the conditional distribution, the likelihood and the posterior distribution are bounded. The Bayesian and maximum likelihood estimation methods are illustrated on a simulated pharmacoki- netic nonlinear mixed-effects model defined by an ODE. Simulation results illustrate the ability of these algorithms to provide accurate estimates
    corecore